

Requirements Management

Colin Hood · Simon Wiedemann · Stefan Fichtinger
Urte Pautz

Requirements Management

The Interface Between
Requirements Development and
All Other Systems Engineering Processes

123

Colin Hood
Simon Wiedemann
Stefan Fichtinger
Urte Pautz

Keltenring 7
82041 Oberhaching
Germany

Colin.Hood@Hood-Group.com
Simon.Wiedemann@Hood-Group.com
Stefan.Fichtinger@Hood-Group.com
Urte.Pautz@Hood-Group.com

ISBN 978-3-540-47689-4 e-ISBN 978-3-540-68476-3

DOI 10.1007/978-3-540-68476-3

Library of Congress Control Number: 2007938804

© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Cover Design: KünkelLopka, Heidelberg

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

The authors

Colin Hood is founder and Chairman of the HOOD
Group. He has been responsible for the development of
control systems from relay based systems to modern
electronic and software controlled systems. Colin holds
an BSc(Hons) in Electrical Engineerig and Electronics, a
Diploma in Management Studies (DMS), and an MBA.
Colin is also a founding member of the International
Requirements Engineering Board (IREB).

Simon Wiedemann has been a Senior Consultant with the
HOOD Group for a couple of years and is now focussing
on his responsibilities as a member of the HOOD Group’s
technical board, approving publications and training
consultants. His PhD is on mathematical methods for
numerical simulations of flexible multibody systems.
Simon is a professor for mechanical engineering at the
Munich University of Applied Sciences.

Stefan Fichtinger is a Senior Consultant with the HOOD
Group. Since the beginning of his professional career,
Stefan has been involved in the requirements definition of
software products such as product data management
(PDM) and logistics systems. As a software product
manager, Stefan was responsible for market analyses and
successful roll-outs.. He also has experience as process
manager. Stefan holds a Dipl.-Ing. degree.

Urte Pautz is a Senior Consultant with the HOOD Group,
supporting customers in introducing and establishing
requirements mangement and engineering processes. To
this end she uses assessments, seminars, workshops and
coaching. Urte has many years of experience in
configuration and change management, and also has a
strong background in information technology and
software development. Urte holds a Dipl.-Inf. degree.

vi The authors

To contact the authors of this book, please use the following email address:

Technical-Board@HOOD-Group.com

You are also welcome to visit the HOOD Group’s homepage using:

www.HOOD-Group.com

Preface and Dedications

We wrote this book to help people that have been trained in one discipline
at the expense of achieving a balanced view of complete systems. We are
systems engineers that are experts in requirements. We are systems
engineers first and foremost, because without an appreciation of all of the
disciplines of systems engineering we would not be able to appreciate the
finer points of our speciality. Without an appreciation of all of the
disciplines of systems engineering we could not be experts in our field.

We gratefully acknowledge the support we received from a team of

people from the HOOD Group in the writing of this book. Amongst them,
we specially want to say thank you to

Gabi Leibmann: she kept a lot of administrative work away from us

Stefan Fichtinger: for doing much more than has been agreed

Michael Jastram: for all his incredible support

Munich, October 2007
Colin Hood

Table of Contents

1 Introduction..1
1.1 Aim of Book ..1
1.2 Benefit to be gained from book...1
1.3 Definition of terms...2
1.4 Structure of the Book...4
1.5 How to read this book..7

2 Why Requirements Management and Engineering...11
2.1 General...11
2.2 Advantages of RM&E in project management ...13

2.2.1 Advantages of project planning...13
2.2.2 Advantages during the implementation phase ..14
2.2.3 Advantages during the acceptance phase ..15
2.2.4 Advantages in regard to version and configuration management...................................15

2.3 Advantages for finding solutions in design and architecture..16
2.3.1 Advantages design and architecture ..16
2.3.2 Advantages in finding solutions ..17

2.4 Advantages in purchase and supplier management ..18
2.5 Advantages in customer service, sales and marketing ..18
2.6 Advantages in test and verification management..19

3 Processes and Methods in Requirements Management and Engineering.............................21
3.1 The roots of Requirements Management and Engineering...21

3.1.1 The progress in computer engineering ..22
3.1.2 Programmers – from artists to facilitators...24
3.1.3 Requirements Management and Engineering today ...27

3.2 Common concepts in Requirements Management and Engineering ..29
3.2.1 The systems engineering concept..29
3.2.2 The requirements management concept ..30
3.2.3 The process quality concept ..31

3.3 Processes and methods in Requirements Management and Engineering31
3.3.1 Requirements engineering ...32
3.3.2 Requirements management..35

3.4 Summary..38

4 Introduction to Requirements Engineering..39
4.1 History of Requirements Engineering...39
4.2 HOOD Requirements Definition Process ...42

4.2.1 Aim of this part ..42
4.2.2 What is a Process? ...43
4.2.3 The activities of the HOOD Requirements Definition Process45
4.2.4 Modelling...45

4.3 Requirements Development and Requirements Engineering ...55
4.4 Summary..57

x Table of Contents

5 Introduction to Requirements Management.. 59
5.1 What is Requirements Management ... 59
5.2 Why we need Requirements Management ... 59
5.3 The benefits of a working Requirements Management.. 65
5.4 Why some people are against Requirements Management .. 71
5.5 How resistance can be avoided ... 73
5.6 After the introduction of Requirement Management.. 76
5.7 Summary ... 77

6 Project Management interface... 79
6.1 What is Project Management .. 79
6.2 How Requirements Management can support the writing of proposals 80
6.3 How Requirements Management can support the definition of the project scope 83
6.4 How Requirements Management can support estimating resources and costs............................ 84
6.5 How Requirements Management can support project planning (scheduling) 85
6.6 How Requirements Management can support project monitoring... 88
6.7 How Requirements Management can support quality management .. 90
6.8 How Requirements Management can support reporting .. 95
6.9 How Requirements Management can support managing people ... 96
6.10 Summary ... 98

7 Configuration Management interface... 101
7.1 Of versions, configurations, and releases ... 102
7.2 Management Disciplines and the German Government V-Modell.. 107
7.3 Configurations in the Context of Requirements Management ... 108

7.3.1 Changes of requirements and specifications in practice... 109
7.3.2 Requirements Management – Configuration Units .. 112

7.4 Traceability in Requirement Management and Configuration Management............................. 114
7.5 Tool Use for Version and Configuration Management .. 115

7.5.1 Solution Concept:Traceability in Practice .. 116
7.6 Summary ... 117

8 Metrics and Analysis... 121
8.1 Metrics – general... 121
8.2 The Importance of Metrics.. 122
8.3 Attributes of Metrics ... 123

8.3.1 Goals Supported by the Metric ... 123
8.3.2 Customers of the Metric.. 124
8.3.3 Interval of Measurement ... 124
8.3.4 Measurements Used .. 124
8.3.5 Unit of Measurement... 124
8.3.6 Data Source (Effort required to capture /reliability)... 124
8.3.7 Interpretation of Results .. 125
8.3.8 Strengths and Weaknesses of the Metric .. 125
8.3.9 Prerequisites for Measurement.. 125
8.3.10 Presentation Format for the Metric ... 125

8.4 Typical Improvement Goals with RM&E .. 126
8.4.1 Reduction in Change Costs ... 126
8.4.2 Reaching CMMI Level 3 in an Assessment ... 127
8.4.3 Reaching a Specific SPiCE Level in an Assessment.. 127
8.4.4 Introducing and Establishing RM&E Methodology in Pilot Projects 128
8.4.5 Creating Basic Know-How in RM&E Amongst Employees 128
8.4.6 Improving the Quality of an RM&E Process.. 128
8.4.7 Improving Customer and Supplier Specifications .. 129

8.5 Example of a Metric.. 130
8.5.1 Creating a basic level of know-how in RM&E amongst staff...................................... 130

8.6 The Evaluation of a Metric by Management .. 132

 Table of Contents xi

8.7 Psychological Aspects of Introducing RM&E Metrics...133
8.8 Summary..135

9 Risk Management interface..137
9.1 What is a risk ...137
9.2 What is Risk Management...138
9.3 Preparing a Risk Management...138
9.4 The Risk Management process..141

9.4.1 Risk identification and how Requirements Management can support..........................142
9.4.2 Risk assessment and how Requirements Management can support148
9.4.3 Definition of countermeasures and how Requirements Management can support151
9.4.4 Monitoring risks and how Requirements Management can support153

9.5 Summary..154

10 Test Management (Validation and Verification) interface ...157
10.1 What are Validation and Verification?..157
10.2 The Validation and Verification planning process..158
10.3 The role of Requirements Management in Validation and Verification160

10.3.1 Requirements Management supports in defining the test scope160
10.3.2 Requirements Management supports in documenting the test method164
10.3.3 Requirements Management supports in documenting who carries out

the verification ...166
10.3.4 Requirements Management supports in defining when to carry out verifications168
10.3.5 Requirements Management supports in estimating the costs of verification171
10.3.6 Requirements Management supports in estimating the effort needed for

verification ...172
10.4 Summary..173

11 Change Management interface ..175
11.1 General...175
11.2 Basics of Change Management ...175
11.3 Factors Influencing Change...176
11.4 Number of Changes during Development...177
11.5 Two Phases of Change Management: Informing and Approval-based178

11.5.1 Informing Change Management..179
11.5.2 Approving Change Management...180

11.6 Turning Change Management theory into practice...186
11.6.1 Effects of a Lack of Change Management ..187
11.6.2 Management support for introducing processes..188

11.7 Procedure for Introducing Structured Change Management ..189
11.8 Summary..191

12 Advanced Requirements Management: the complete specification.....................................193
12.1 Interfaces between other Systems Engineering disciplines and Requirements193
12.2 Getting away from the document view ...195

12.2.1 The document view..195
12.2.2 The information view ..196
12.3 Implementing Requirements Management ...198
12.3.1 Implementing the interface to Project Management and Quality Management200
12.3.2 Implementing the interface to Version Management and Configuration

Management...203
12.3.3 Implementing the interface to Risk Management ...207
12.3.4 Implementing the interface to Test Management..208
12.3.5 Implementing the interface to Change Management ..209
12.3.6 Overview..212

12.4 Summary..213

xii Table of Contents

13 The HOOD Capability Models .. 215
13.1 The meaning of capability models.. 215
13.2 Why we need capability models ... 216
13.3 Two example capability models ... 218

13.3.1 SPICE .. 218
13.3.2 CMMI.. 220

13.4 HOOD Capability Model for Requirements Definition ... 221
13.5 HOOD Capability Model for Requirements Management... 222
13.6 Summary ... 222

14 The HOOD Capability Model for Requirements Definition .. 223
14.1 Brief repetition of the HOOD Requirements Definition Process... 223
14.2 The idea behind the HOOD capability model for requirements definition................................ 224
14.3 The structure of the HOOD capability model for requirements definition 226
14.4 How to use the HOOD capability model for requirements definition 228

14.4.1 Level 1: Getting started... 228
14.4.2 Level 2: Capable.. 236
14.4.3 Level 3: Expert .. 239

14.5 Summary ... 242

15 The HOOD Capability Model for Requirements Management... 243
15.1 The structure of the HOOD capability model for requirements management 243
15.2 How to use the HOOD capability model for requirements management................................... 244

15.2.1 Level 1: Getting started... 245
15.2.2 Level 2: Capable.. 252
15.2.3 Level 3: Expert .. 259

15.3 Summary ... 265

List of References ... 267

Index ... 273

1 Introduction

1.1 Aim of Book

The aims of this book are to motivate successful improvements to
requirements management, to promote understanding of requirements
management as one of an interrelated set of systems engineering
disciplines, and to understand these systems engineering disciplines and
their interfaces to requirements processes.

1.2 Benefit to be gained from book

By understanding and following the guidance in this book you will be able
to reap benefits of synergy between team members and across
departmental boundaries by coordinating efforts in requirements
management as part of your systems engineering activities.

We have seen organisations that as they have grown have developed to
become a collection of independent departments. Too often these
departments concentrate increasingly on achieving their departmental
aims, eventually to the extent that their departmental aims become more
important than the aims of the overall organisation. What we need is
coordinated teamwork where each part of the team pulls in the same
direction.

This book helps a team to understand the central role played by
requirements in systems engineering projects. It shows that no one systems
engineering discipline is more important that any other. It shows that all
the systems engineering disciplines are interrelated and interdependent.

This book will establish the need for, and legitimise the use of
requirements management and engineering.

Managing requirements consists of managing changes to requirements,
managing various versions of requirements, managing multiple
configurations of requirements, managing deliveries of requirements on
time, in budget and to the correct quality without taking undue risks. And

2 1 Introduction

all the time ensuring that all those who need to know, know who is
responsible for what. All of this requires communication and commitment.

Product and services produced to meet requirements must be checked
against requirements to ensure that the specified and agreed requirements
have been achieved

A perfectly optimized system is a set of suboptimal subsystems. If teams
try to optimise each subsystem there will be conflict. Following the advice
in this book teams will be inspired to see the big picture and be able to
concentrate on getting the system built as required.

To introduce terms such as RM&E (requirements management and
engineering) and relate to other nomenclature so that CMMI (Capability
Maturity Model Integration) terms may be used throughout the book

1.3 Definition of terms

CMMI: Capability Maturity Model Integration. A framework for scoring
an organisation’s ability to work with systems engineering processes.
CMMI comes from the Software Engineering Institute (SEI) of Carnegie
Melon University in Pittsburgh U.S.A. Various trademarks and service
marks of the SEI relating to CMMI are acknowledged.

HCM: HOOD capability model. A model for judging the quality of the

implementation of a process mainly by considering the quality of its work
products. Often used to support motivation of change programmes by
measuring and publishing progress.

Process: (see also Software Process). A sequence of steps performed for

a given purpose; for example, the software development process.

Requirement: A statement identifying a capability, physical

characteristic, or quality factor that bounds a product or process need for
which a solution will be pursued.

Requirements Definition: The process of producing documented and

agreed requirements by means of elicitation, specification, analysis
(quality check: judgment of requirements against quality criteria), and
review (leading to acceptance, rejection, or return for rework) of
requirements.

Requirements Development: The purpose of requirements development

is to produce and analyze customer, product, and product-component
requirements.

 1.3 Definition of terms 3

Requirements Engineering: See Requirements Development.

Requirements Management: The set of procedures that support the

development of requirements including planning, traceability, impact
analysis, change management and so on.

Requirements Management: The sum of the interfaces between

requirements development and all other systems engineering disciplines
such as configuration management and project management. The purpose
of requirements management is to manage the requirements of the project's
products and product components and to identify inconsistencies between
those requirements and the project's plans and work products.

RM&E: Requirements management and engineering. The overall term

used to include all requirements related processes.

Note to RM&E: In the 1990’s the overall term used was requirements

management. Then towards the end of the 1990’s and early in the new
millennium a trend gathered momentum to split the management of
requirements from the development of requirements. Some organizations
made the distinction along the lines that developing or defining
requirements was requirements engineering. Others disagree. Some
organisations use both terms requirements management and requirements
engineering and consider that their understanding is the one and only true
definition. Other organisations use definitions that completely contradict
the understanding of others, and also consider that their understanding is
the one and only true definition. Some use the CMMI definitions of
requirements management and requirements development and combine
these by using requirements engineering to encompass everything. So we
use the term requirements management and engineering in an attempt to
include all people, while acknowledging that there are a variety of
definitions. At work we use whatever terminology our customers wish.
There are more important battles to fight than who has the best words.
People who get hung up on whose definition is correct, (or more normally
the fight is who is incorrect!) should read A. A .Milne and learn from
Winnie the Pooh; “We can use words to mean whatever we wish them to
mean”. As long as we understand each other we can work together. We
advise the use of standards wherever possible. Where there is no single
standard we must agree amongst ourselves.

4 1 Introduction

Software Process: (see also Process). A set of activities, methods,
practices, and transformations that people use to develop and maintain
software and the associated products.

Stakeholder: A “stakeholder” is a group or individual that is affected by

or in some way accountable for the outcome of an undertaking.
Stakeholders may include project members, suppliers, customers, end
users, and others.

Alternative definition: People who will be affected by the project or can

influence it but who are not directly involved with doing the project work.
Examples are managers affected by the project, process owners, people
who work with the process under study, internal departments that support
the process, customers, suppliers, and financial department.

Alternative definition: People who are (or might be) affected by any

action taken by an organization. Examples are: customers, owners,
employees, associates, partners, contractors, suppliers, related people or
located near by.

Alternative definition: Any group or individual who can affect or who is

affected by achievement of a firm's objectives

Test: (See Validation and Verification). The activity of checking

correctness.

Verification: Although “verification” and “validation” at first seem quite

similar in CMMI models, on closer inspection you can see that each
addresses different issues. Verification confirms that work products
properly reflect the requirements specified for them. In other words,
verification ensures that “you built it right.”

Validation: Validation confirms that the product, as provided, will fulfill

its intended use. In other words, validation ensures that “you built the right
thing.”

1.4 Structure of the Book

This book is divided into three parts. Part one is Requirements
Management and Engineering: requirements management is greater than

 1.4 Structure of the Book 5

the sum of its parts. In this first part the aim is to introduce the book and to
establish a common understanding of terminology with the reader.

Part two is Getting Down and Dirty: the low-down on systems

engineering disciplines and their interfaces to requirements processes. In
this part the aim is to discuss in detail the systems engineering disciplines,
and specifically to define the interface between each systems engineering
discipline and requirements development.

Part three is A Practical guide: helping to motivate and support

successful implementation of requirements driven improvements with
HOOD capability models (HCM).

Part one starts with Chapter 1 Introduction. This is the introduction to

the book and describes the aims of the book and the benefits to be gained
from reading the book. Some terms are defined that aid the understanding
of the following chapters. Some terms are defined more than once quoting
from various sources to show that the terms, although used often, are not
standardized. If these definitions are contradictory it is made clear which
definition is to be used in this book. The structure of the book is explained
and a guide is given how to read this book to get the best advantage.

Chapter 2 Why Requirements Management and Engineering? In this

chapter the need for and benefits of requirements management and
engineering (RM&E) are explained. Terms such as RM&E and other
nomenclature are explained so that CMMI terms may be used throughout
the book. Definitions and detailed introduction of interfaces between
systems engineering disciplines is not done here, but are investigated later
in chapter 5.

Chapter 3 is Processes and Methods in Requirements Management and

Engineering. The aim is to introduce the other systems engineering
disciplines and process including those described by CMMI which will be
explained in detail to form the structure of Part 2, the main part of this
book.

Chapter 4 is Introduction to Requirements Engineering. The chapter

introduces and defines requirements engineering, requirements
development, and the HOOD requirements definition process.

Chapter 5 is Introduction to Requirements Management. Requirements

management is firstly defined in terms of its activities and also in terms of
its results. This is the introduction to a discussion that is the main part of

6 1 Introduction

this book. After the main discussion involving all the other disciplines,
requirements management according to HOOD will be redefined in the
more advanced, inclusive, and sophisticated way.

Part 2 starts with Chapter 6 Project Management. Project management is

introduced, and its relationship to requirements development is
investigated. The overlapping responsibilities between a project manager
and a requirements manager are discussed, and the information common to
both disciplines is exposed. The similarity and differences between tasks
on a project plan and the requirements in a specification are explored.

Chapter 7 is Configuration Management. Configuration management is

introduced and its relationship to requirements development is
investigated. The overlapping responsibilities between the roles of
configuration management and a requirements manager are discussed, and
the information common to both disciplines is exposed. The idea of
requirements and related information as configuration items and a set of
requirements as a specification are explored.

Chapter 8 is Measurement and Analysis. Measurement and analysis is

introduced, and its relationship to requirements development is
investigated. The role of measurement and analysis is discussed, and the
information common to measurement and analysis and requirements
development is exposed. The similarity and differences between
measurements of requirements and the requirements in a specification are
explored. Particularly the need for measuring to support an aim rather than
measuring just because a measurement is possible is emphasised.

Chapter 9 is Risk Management. Risk management is introduced, and its

relationship to requirements development is investigated. The overlapping
responsibilities between a risk manager and a requirements manager are
discussed. The information common to both disciplines is exposed. The
different types of risks and risk mitigation and their influence on the
requirements in a specification are explored, as is the influence of
requirements as a source of risk.

Chapter 10 is Test Management (Verification and Validation). Test

management is introduced, and its relationship to requirements
development is investigated. The overlapping responsibilities between a
test manager and a requirements manager are discussed, and the
information common to both disciplines is exposed. The similarity and
differences between test cases in a test plan and the requirements in a

 1.5 How to read this book 7

specification are explored. The difficulties encountered when using a test
plan as a requirements specification are recounted.

Chapter 11 is Change Management. Change management is introduced,

and its relationship to requirements development is investigated. The
overlapping responsibilities between a change manager and a requirements
manager are discussed, and the information common to both disciplines is
exposed. The similarity and differences between change requests and the
requirements in a specification are explored.

Chapter 12 is Advanced Requirements Management: the complete

specification. This chapter is the summary of all previous chapters in Part
2, showing requirements management as a complete specification of the
interfaces between requirements engineering and other systems
engineering disciplines.

Part 3 is a practical guide, helping to motivate successful

implementation of requirements driven improvements with HCM. Part 3
starts with Chapter 13 The HOOD capability models. This chapter
provides motivation for supporting change. Psychological reasons why we
need to measure and publish progress or lack of progress is described.
Chapter 13 The HOOD capability models is an introduction to Chapters 14
and 15 which describe the HOOD capability models in detail.

Chapter 14 is HCM for Requirements Definition. The aim of this

chapter is to introduce and define HCM for requirements definition. Help
is offered for introducing improvements in practical terms. A stepwise
introduction is recommended and supported, rather than present a
theoretical treatise.

Chapter 15 is HCM for Requirements Management. The aim of this

chapter is to introduce and define HCM for requirements management.
Help is offered for introducing improvements in practical terms. A
stepwise introduction is recommended and supported. This chapter pulls
together the threads of all previous chapters and weaves the themes
together to create a tapestry of all the ideas presented thus far. Each thread
remains distinct but still takes its place in the overall picture.

1.5 How to read this book

There are many ways to use this book. Consider it a resource from which
we may take as we please. The book may be read from beginning to end or

8 1 Introduction

it may be used as a reference book and dipped into time and again with
random access as a project progresses.

The book is divided into three parts. Part 1 is an introduction and sets
the scene for the rest of the book. Part 2 deals with systems engineering
disciplines and their relevance to requirements management. This is the
main part of the book that you will use as a reference for technical
information within your project. Part 3 deals with the challenge of
introducing the ideas of Part 2 into your organisation. Part 3 is the part of
this book that you will use as a reference for management information to
support your team during the introduction of improvements.

Reading from beginning to end is particularly useful not only for those
beginning to grapple with the complexities of requirements management.
Also, those with many years experience might enjoy seeing things
explained that previously had been taken for granted. You may agree with
some or all of the various opinions presented. We hope that if you at first
disagree with some of the opinions that this will help you to respect the
fact that there are many dearly held opinions, and that our industry is still
in its infancy and there is much still to be standardised. We have tried to
represent various views while being sure to tell you what we have found to
work in practice. In cases where there is disagreement we fall back on the
author’s years of experience in engineering since 1977 and use our
common sense. Remember that this subject is no longer a technical
challenge; we are dealing with peoples’ understanding and people’s failure
to understand. We are dealing with peoples’ weaknesses and insecurities.
So please be kind to those with a different opinion to yourself. As my
Father said, “You can learn something from any idiot”. Your challenge at
work is to include others and to strengthen the team. We hope this book
helps you better to construct and explain your arguments in order that you
can convince. We hope this book helps you better to understand the
opinions of others that you can benefit from a broader view.

Using the same principal as is used in good training courses,
information will be introduced in context to be defined later in detail. This
organisation of information enables and supports the reading of the book
from beginning to end. Learning is supported and encouraged by
introducing topics in a broad way. By using a technique similar to active
listening, the reader is encouraged to ask questions. By asking questions
the answers to the questions become much more relevant than if the
information is presented in a series of unrelated and surprising facts. By
removing the element of surprise as another piece of information is
presented learning is supported. In this book when information is dealt
with in detail there is no surprise as we have prompted the questions by the
manner of the introduction.

 1.5 How to read this book 9

Consider your brain to be a series of cupboards, drawers, and shelves.
The stuff you store on shelves is easily visible and can be found without
much structuring. You just have to scan the shelves for what you want, and
when you see what you are looking for your search is over. But your shelf
space is limited, and anyway, even if you could replace all of your drawers
and cupboards with shelves the search would take too long. Only having
shelves for storing information would be like the advice given in the comic
Viz, “If you have trouble finding things, just thread all of your possessions
onto a piece of string. If you lose anything, just follow the string from one
end to the other and you will be sure to find what you are looking for.”
Now, that is a technical challenge!

So we need more than just shelving. We need more structure. If we have
lots of things put away we need to file things in some order so that we can
find them again. We need cupboards so that we can store different things
in different places. The cupboards may contain shelves but these are only
visible when we have opened the cupboard door. If we do not later shut the
door properly the contents may fall out.

The early chapters can be considered to be an explanation of which
cupboards we have. By explaining the aims of each chapter and each part
of each chapter we open the cupboard doors so that you may file the
information away in your brain. By summarising each chapter we help you
to close the cupboard door to prevent the contents falling out. The aims at
the beginning and the summary at the end of each chapter support learning.

The modular form of this book supports the reading of the book as a
reference book so that detail is easy to find just when your project needs it.

2 Why Requirements Management
and Engineering

2.1 General

To ask why requirements management and engineering should be used is
rather simplistic. A better question would be: “Why and when is it
recommended and important to use RM&E methods and processes in
projects?” This, however, is an excessively long title.

In recent years, management started to give RM&E more and more
importance. For instance, management may require the introduction of
requirements management in an organization by a specific deadline .

This approach implies that until that point there was no requirements
management in the organization at all, but this is never true:

Every organization offering a product or a service practices
requirements management. If this were not be true, the organization would
have perished a long time ago. All organizations have a relationship
between customer and contractor. And customers have aims that they are
trying to achieve by using the contractor’s products and services.

If there is the aim to fulfil the customer’s wishes with products and
services, requirements management takes place – at least implicitly.

Why is this topic more important for some organizations than for
others? Why did the implementation of RM&E methods and processes
gain so much importance during the last decades?

If we investigate small companies that develop a relatively simple
product, requirements management is typically not a big deal. In such
organizations, the development department usually communicates directly
with the customer. They know the customer and their needs as well as the
product or service to be developed.

Under these circumstances, it’s just a small step from customer need to
product or service, as only a small number of people is involved. The
team members can communicate verbally and have little difficulty
coordinating. The complexity of the product or service isn’t high enough
to require division of labour. Under these circumstances, acceptable and
even good results can be achieved.

12 2 Why Requirements Management and Engineering

But if an organization grows rapidly, if the complexity of the products
increases and if separation of labour becomes more common, the
importance of using structured methods and processes in requirements
management increases as well. Modern RM&E methods originate, not
surprisingly, in the air and space flight industries. After all, these
industries have always been pioneers in designing highly complex system
that are highly coupled. On top of that, development is highly distributed
which means that small coordination problems can produce fatal and
expensive consequences.

In the last decades, the importance of electronics in vehicles increased
significantly. The functionalities in electronics are a major distinguishing
factor between car manufacturers. The method described earlier – to keep
the requirements solely in the heads of the people – worked fairly well
initially. But there is a limit, at which even the “local heroes” of an
organization loose sight. This is even more fatal, as this process happens
silently. But at some point, the number of errors becomes overwhelming
and the costs explode.

To sum it up: The methods and processes of RM&E are indispensable
for organisations that develop complex products or services using
separation of labour.

There is one issue, however, that makes it very difficult to introduce
RM&E methods into projects: A neglect of RM&E in the starting phase of
a project materializes only during the final phase of a project.

In his book Software Engineering Economics, Prentice-Hall, published
in 1981, Böhm states that the cost for fixing errors raise drastically, the
later in the development process they are discovered. Today this is
considered common knowledge.

R
el

at
iv

e
co

st
to

 fi
x

a
de

fe
ct

TimeRequirements
Design

Implementation
Development testing

Acceptance testing
Operation

Figure 2.1: Relative cost of fixing a defect

 2.2 Advantages of RM&E in project management 13

This finding is even more significant, if we look at the areas where
errors are found.

F. Sheldon analyzed a US-Air Force project, where 40% - 60% of all
errors were found in the requirements. Only a third of the errors were
found in design and code.

Sh
ar

e
in

 to
ta

l n
um

be
ro

f e
rr

or
s

41
%

28
%

7% 6% 6% 5% 5% 2%

O
th

er
s

In
te

rf
ac

e

D
at

a

En
vi

ro
nm

en
t

H
um

an

D
oc

um
en

ta
tio

n

R
eq

ui
re

m
en

ts

Lo
gi

c
de

si
gn

Figure 2.2: The share of errors in requirements in total number of errors

In other words: The highest savings can be achieved by focussing on
finding errors – or avoiding them in the first place – during the early stage
of a project by consequently using requirements management.

The advantages of RM&E methods and processes are even more visible
if we investigate the connection to other disciplines, like project
management, version management, configuration management, design,
architecture, solution finding process, purchase, supplier management,
customer service, distribution, marketing, as well as test management.

2.2 Advantages of RM&E in project management

2.2.1 Advantages of project planning

The aim of project management is to produce in the required quality with a
calculated time and money budget. Typically, the estimate is documented
in a contract.

A serious estimate can only be produced, if contractor and customer
agree on the requirements of the system to be developed, at least roughly.
Supposedly there are project managers or sales people who are capable of
creating a time frame and cost estimate contractually, without even
formulating the requirements of the system under development. But this

14 2 Why Requirements Management and Engineering

approach reduces the chances of success for the project from the very
beginning.

Highest priority goal should be to develop as soon as possible a mutual
understanding of the system under development between customer and
contractor. This will serve as the foundation for a serious estimate of cost
and time.

We should wonder why, in spite of this insight, countless offers contain
cost and time estimates, but only a vague notion of the deliverable. It may
have to do with the fact that collecting and eliciting the requirements for
the first round of estimates takes a significant amount of work that neither
the contractor nor the customer allocated a budget for. The start of the
implementation is often the perceived starting time of a project. But this
doesn’t reflect reality: The moment when the decision of developing a new
system had been made should be considered to be the starting point of the
project.

According to RM&E best practice, 40% of the development time should
be allocated for specifying. This value is based on experience. This
reduces implementation time to 20%, leaving the remaining 40% for
testing.

What does this mean for the creation of offers? The customer should
allocate a budget of time and money before the bidding even starts, in
order to produce a good requirements specification that will serve as a
basis for the call for bids. Likewise, the contractors must have enough
time to analyse the requirements specification and to write a target
specification.

Both sides benefit from this approach, as a common understanding in
regard to the system under development is being established. This will
improve the quality of the project plan (time and budget), and ultimately
for the implementation phase, which tends to be more expensive. The
result is a more precise calculation of the system architectures, optimal
resource planning, and avoidance of aberrations (based on
misunderstandings). All this results in a reduction of costs

2.2.2 Advantages during the implementation phase

There is a high risk that changes in requirements won’t be documented in
the implementation phase. There are many reasons for this which are
detailed in chapter 11 of this book.

In a proper realization of RM&E best practices, a process should be
defined that regulates the handling of changes during all stages of the
project.

 2.2 Advantages of RM&E in project management 15

Advantages for project management are manifold. For instance,
contractor and customer both have an up to date project plan that they
agree upon. All relevant stakeholders always have an up to date project
status. Conflicts that are based on different understanding of the services
to be rendered are thus avoided in the first place. Coordination of tasks is
simplified, as changes are being discussed and decided upon in the open.
All project tasks refer to a consolidated specification and can be traced to
the implementation of the solution. Due to prioritizing of requirements,
unforeseen influences can be dealt with quickly by adjusting the project
plan. In other words, the methods of RM&E support the project manager’s
responsibilities.

2.2.3 Advantages during the acceptance phase

The final acceptance, also called buy-off, typically marks the end of a
project. But acceptance can only happen if the acceptance criteria are
fulfilled. The criteria, in return, should have been formulated together
with the requirements.

If the specification has not been updated during the course of the
project, it is difficult to define acceptance test, or to perform a final
acceptance in the first place.

An up to date specification is the basis for test planning. Test cases can
and should be developed based on the requirements. Feedback in the form
of test results allows the project manager to estimate the actual quality of
the product under development, and whether the project is on schedule.

A defect list based on tests is the foundation for making the decision of
finishing a project.

There are real projects that continued on for years, because contractor
and customer couldn’t reach agreement on the final acceptance, caused by
an outdated specification.

2.2.4 Advantages in regard to version and configuration
management

Version and configuration management is a complex field in itself. Every
business that continuously develops products consisting of components
must deal with this topic.

Typically, there is a concept that regulates the versioning and
configuration of products. There is the definition of a product structure, a
component structure and an organization structure.

16 2 Why Requirements Management and Engineering

RM&E must develop an information infrastructure for specifying
requirements based on these concepts, corresponding to the structures of
organization, product and development.

Definitions for criteria must be defined that associate requirements with
product versions, product variants, module versions and module variants.

The advantages are obvious:

• Product management is aware of dependencies of requirements and
knows at every time which requirement is implemented in which
product version or variant

• Product management can estimate the implications of changes on
product versions or variants

• Key requirements are specified only once; changes are mapped
automatically on the relevant development projects

• Problems with the respect to implementation or realization can be traced
to specific product versions and variants

• Specific requirements can be reused for multiple product versions and
variants

2.3 Advantages for finding solutions in design
and architecture

2.3.1 Advantages design and architecture

Agile methods are a hot topic in software development. Here, a system
with minimal basic functionality is developed at the beginning of the
project. Subsequently, the system is extended in small steps in close
collaboration with the customer. This stands in stark contrast to the
waterfall model in software development, where the system is specified
completely before implementation starts.

As so often, reality is in between these two approaches. For instance the
fundamental general conditions and aims of the project shouldn’t change.
To exaggerate, a system shouldn’t start as a bookkeeping system to
become a CAD System during the course of the project.

On the other hand, changes must be allowed during the implementation
phase.

Everybody who ever built a house knows what is meant by this. The
fundamental architecture must stand before implementation starts (e.g.
number of floors, location, type of heating, etc.). Nevertheless, some
adjustments during the construction phase must be possible (e.g. the type
of doors and windows, partitioning of rooms, etc.).

 2.3 Advantages for finding solutions in design and architecture 17

In other words, the basic requirements must be clearly defined and
consolidated and be sufficient to build a stable architecture and design.
Without this, an expensive redesign of the architecture may be necessary
later on in the project. RM&E methods help through elicitation,
modelling, analysis and review to create a foundation of these fundamental
requirements. This will give the system a stable and sustainable
architecture.

During development, RM&E helps to accommodate changes that will
come without doubt. This is supported by structured processes. Working
based on different states of the specification is a common problem
especially in big teams. This discrepancy often shows up only during
integration. RM&E methods help to execute change management in a
structured fashion, which helps avoid erroneous development in its early
stages.

2.3.2 Advantages in finding solutions

The key here is the capability to innovate. Especially companies and
developers who used a specific technology for a long time for solving
customer problems have the tendency to keep improving the technology in
use, rather than to consider new avenues.

Examples help to explain this in detail. A central user requirement may
be: “The user must be able to see the picture the most 5 minutes after
taking it.” This user requirement could be realized thanks to the
development of the Polaroid camera in the late 40s. It is based on the
technology of special films that develop and fixate the photograph. The
technology was improved over the decades, until digital cameras entered
the market. Digital photography was a disruptive technology that solved
the actual user requirements better and much cheaper than the technology
based on photographic film. Bottom line: The Polaroid camera was almost
completely replaced by digital cameras and is only left in a few niche
markets.

There are numerous examples like this.
RM&E support the ability to innovate by providing elicitation methods

for requirements on all levels and their traceability. To realize this, user
requirements are specified in a way that they don’t contain any
unnecessary limitations or solutions, due to technology or otherwise.

18 2 Why Requirements Management and Engineering

2.4 Advantages in purchase and supplier management

Typically, the purchasing department insists on a clear description of the
scope of work for the system to be developed. This simplifies comparing
offers from suppliers based on the work description, or user requirements
specification. Ideally, the specifcation is sent to various suppliers, who in
return create offers. The purchasing department can then pick the cheapest
offer.

What are the advantages for the purchasing department? It can focus on
the commercial aspects, like selecting the offer with the most favourable
conditions and the cheapest price.

RM&E can only support the purchasing department with some aspects.
For instance, it can support the creation of the user requirements
specification, which is then sent to all potential suppliers.

But in addition, it is expected that the suppliers create a target
specification, where they elaborate on how they intend to solve the
problem. The department that commissioned the project should support
the purchasing department in the evaluation of the target specification.
Thus, the ultimate decision is made by the purchasing and commissioning
departments together, and price is just one aspect in the decision making
process.

The advantage of this approach is that the decision has a solid
foundation, simplifying significantly the purchasing negotiations and
supplier assessments.

2.5 Advantages in customer service, sales
and marketing

Customer service can be an indicator of the service quality of an
organization. Customer service typically has great interest in the high
quality of the product delivered. If this is not the case, the effort of
customer service will be unproportionally high compared to other
departments.

Why is this? If problems are recognized by customers after delivery,
customer service must take care of them. The most expensive problems
are those where customer service must do this on site for a large number of
users. But customer service has to deal with more than just product
defects: They also deal with complains regarding lack of functionality or
bad usability.

This makes customer service a universal communication channel that
allows the company to gather feedback regarding the quality of the

 2.6 Advantages in test and verification management 19

product. Unfortunately, often this channel is underutilized for product
improvements.

If customer service is used as the source for product requirements, the
effort and cost of customer service could be lowered.

Customer service can also be used as a source of requirements for
performing system diagnoses, which is another advantage of RM&E
methods. Upon a customer service request, a potential system error must
be identified quickly, so that it can be fixed without delay.

This, too, reduces effort and thereby costs for customer service.
Other beneficiaries of implemented RM&E methods are sales and

marketing. Those are the groups that are typically the departments in an
organization that are the closest to the customer. This makes it particularly
important that requirements from the customers are not only captured
precisely and accurately, but also that they get clearly communicated to the
development department.

Communication is the most common problem in this area. Sales and
marketing on one side and development on the other side need to have a
solid foundation for talking to each other. It is often difficult to establish a
common understanding regarding the system under development. But this
is a crucial precondition for the development of a successful system.
RM&E methods support the selection of appropriate modelling techniques
and specification languages, which for the foundation for communication
and avoid ill developments.

2.6 Advantages in test and verification management

The department for testing and verification management benefits the most
from the active use of RM&E methods. The main task of this group is not
only to asses the quality of already developed products and systems, but to
accompany the whole development process and to verify intermediate
results like specifications.

In order to execute this task, a reference between the current and desired
state must be established. Thus, the definition of the desired state for the
system under development is a prerequisite. Typically, this is captured
with a specification. But far too often specifications are neglected and
have a low quality. They tend to have gaps, are out of date or missing
completely. RM&E not only accounts for verification of the system under
development, but of the specifications as well, thereby creating a
foundation for the creation of test cases.

Has this been missed, only few options are left: to develop new test
cases through drawn-out interviews with the stakeholders or development
department, or simply to use “common sense” and hope for the best.

20 2 Why Requirements Management and Engineering

This results in different understandings of the system under
development. Not only different understandings between supplier and
customer, but also between departments and individuals. In such a
situation, every statement regarding the quality of the system must be put
into perspective, as there is not even agreement on the end product.

Using the methods of RM&E, an up to date specification can be
guaranteed at any time. This results in a fairly accurate agreement on the
end product between the stakeholders. This in turn is a solid foundation
for the creation of test cases. The implications of changes during the
course of the project can be traced and test cases adapted to the changes, if
necessary. Unnecessary test efforts are avoided and the information value
in regard to the quality of the system is improved.

3 Processes and Methods in Requirements
Management and Engineering

The previous chapters have given an introduction to the subject
requirements management and engineering and have shown its meaning
and why it could be desirable to take requirements management and
engineering activities into account in product development projects.

This chapter gives information on the history and background of
requirements management and engineering, thus laying the foundation for
the detailed discussions in the following chapters.

Common methods and processes associated with requirements
management and engineering are presented, the details of which will be
explained later. This overview also serves as a more detailed introduction
to the subject, giving information to understand the current status of the
development of requirements management and engineering as a project
discipline in its own right.

3.1 The roots of Requirements Management
and Engineering

The roots of requirements management and engineering go very far back
in history, depending on what point of view one takes. If in a very simple
approach we define requirements engineering as trying to understand what
a customer wants, then it goes back to the first craftsmen that have created
anything for anyone else but themselves.

However, the idea of requirements management and engineering as we
know it today has its roots in more recent days. It has been born together
with the computer, or more precisely with the birth of what we call
software, and has fully grown during the time of what is nowadays called
the software crisis. The software crisis is usually thought to have taken
place sometime around 1970, but events such as the Ariane explosion or
products such as the common operating systems for personal computers
may lead an observer to think that this crisis is far from being over. In fact,
the more complex things become (and they always become more and more

22 3 Processes and Methods in Requirements Management and Engineering

complex), the higher the probability that something goes wrong
somewhere.

Figure 3.1: Persian craftsman artwork (source: wikipedia)

It will be interesting to see whether the industry will ever learn that
decent products do not necessarily have to be complex in order to work
properly. Do you know of any industrial product that became simpler
throughout the years?

3.1.1 The progress in computer engineering

The dawn of computer systems marks a milestone in the development of
modern industries (for the interested reader we take the liberty of pointing
out to the fact that the first freely programmable computer system was
actually the ZUSE, and not the ENIAC as some people would rather have
you believe).

Although very complex systems were known before the first computer,
such systems were always physical, which means that the product was
fully defined by what is today called the hardware only. There was not
more inside than you could see from the outside. In other words, before the
computer there was no such thing as software. But why is this such an
important difference?

The difference between hardware engineering and software engineering
is that hardware engineering is usually inevitably constrained by physical

 3.1 The roots of Requirements Management and Engineering 23

laws. For example, if you want to build a sports car that shall be able to
accelerate from zero to 100 kilometres per hour within 4 seconds, you have
to relate the car’s total mass to the necessary power of the engine. Doing
this you will quickly find out that there is only a very narrow range of
possible or realistic combinations of combustion engine power and car
mass that allows for the basic requirement to be met.

Figure 3.2: First freely programmable computer, Zuse Z1 (source: wikipedia)

By contrast, software engineering is usually only constrained by the
physical properties of the computer hardware used. For example, it is
pointless to programme a graphical user interface with a resolution of 100
dots per inch if the screen you are using only has a maximum resolution of
50 dots per inch. But if the screen allows for such a resolution, then you
can build your user interface in an infinite number of ways. You can use
buttons that must be mouse-clicked, or you can use command line input, or
you can use speech recognition and so on. If you use click buttons, you can
line them up at the bottom, or at the top, or just spread them all over the
screen, and so on. If you line them up at the top, you can create them to
have all the same size, or to have different sizes depending on their labels,
or to have random sizes and so on. If you decide to make them have all the
same size, you can distribute them along the width of the screen or just
place them next to each other, independent of how much space this
consumes. And so on and so forth.

It will be seen from this simple example that the freedom of
implementation is usually incomparably larger in software engineering

24 3 Processes and Methods in Requirements Management and Engineering

than it is in hardware engineering. It is exactly this general freedom that
has caused so many problems throughout the last 4 decades.

Although mechanical or hardware systems have also become very
complex recently, owing for example to the findings of material science
such as smart materials with memory or materials that change their
aggregate state due to electric current, many people and organisations still
believe that requirements management and engineering is the province of
software engineering only.

It will be shown in this book that requirements management and
engineering covers so many aspects of development projects that there is
little doubt about the benefit for both software and hardware engineering
projects.

3.1.2 Programmers – from artists to facilitators

The first computer systems were exclusively managed and programmed by
specialised engineers that often were owned by the inventors of the
system. While at the very beginning the principle feasibility of such
systems had been one of the main aims to be proven, computers were soon
used for special purposes like doing numerical maths.

Figure 3.3: Punched cards controlling a mechanical loom (source: wikipedia)

 3.1 The roots of Requirements Management and Engineering 25

The main challenge with these early systems was to actually make them
work the way the inventors intended them to work. The programmers had
a complete plan in their heads, and this plan was usually so simple that
there was no questioning that. For example, many of the early systems
simply had to add or subtract any two numbers that were entered with
punched cards. Some of the early systems were even designed to only
perform one task such as adding two numbers, so that the arrangement of
the hardware itself represented an invariable programme.

In these days, a programmer was very much an engineer and an artist in
a new field of science. Apart from academia and warfare, people in general
had little interest for computer systems and all applications were specially
designed and very individual.

Thus the development of computer systems dragged itself along, its
impacts unrecognised by most of the world. Due to the electric parts that
then were state of the art and their physical constraints, this development
had rather been slow and not every spectacular to the common people.

Figure 3.4: Front panel of the IBM 650 (source: wikipedia)

Another huge leap was taken during the advent of astronautics. The
physics of space travel make it necessary to build everything as light as
possible. It was soon found that it is impossible for example to build a
satellite with 10 kilogramme of equipment when this equipment needs 100
kilogramme of computer hardware to operate. Thus the quest for new

26 3 Processes and Methods in Requirements Management and Engineering

computer hardware led to the invention of semi conductors amongst
others, and this in turn quickly led to the invention of integrated circuits.

With integrated circuits it was first possible to build small and powerful
multi purpose computer systems that could be programmed more or less
arbitrarily.

In those days, programming changed from an art to a special skill that
was mainly the domain of technicians in the new field of information
technology. The average programmer was used to customers who did not
know very much about the subject and its implications and who fully had
to trust his or her knowledge and experience.

The customers roughly defined what they needed, and the programmers
did all the work and made all the necessary decisions based upon personal
experience, skill and inspiration. The motivation of the early programmers
to document anything was often low. This way the computer remained
some sort of black box that could be made to do anything, but not by
everyone.

A few years later the idea of the personal computer for everyone forever
changed the way of working of most of the people. Small multi purpose
computer systems were soon produced in masses and could be found in
almost every office. They were meant to support in every day activities
such as writing letters, doing calculations and so on.

Figure 3.5: The Commodore C64 personal computer (source: imageafter.com)

The personal computer first made it necessary to produce computer
programmes for thousands of users and more, because solely buying
individual solutions would have been impossible for most of the users.

 3.1 The roots of Requirements Management and Engineering 27

Programming then became the skill of guessing people’s needs.
Programmers did what they could, but still mainly programmed and often
failed to realise what their customers really wanted. Many programmes
were created that were hardly or never used, for they would have changed
so much the way people used to work that the programmes were
unacceptable.

It was then realised that what was necessary was to find out the
problems and visions of the future users of the system. The art of
programming then changed to devising and applying the most effective
and promising ways of doing that sort of research and of delivering what is
wanted on time and within budget. Some organisations were very good at
this, and some went on completely ignoring their customers’ needs.

So all in all, the success of a typical software project still depended
largely on the skills of the programmers. Therefore, methods and processes
were soon introduced to make the results less dependent of the
programmers, more reproducable and more stable in terms of quality.
Concepts such as structured programming were invented, and
programmers were told to use flow charts and the like to explain to their
customers what they plan to implement in a language that he or she might
understand.

These various methods and ideas finally culminated in the modern
concept of requirements management and engineering. The roots however
are still the same and may be summarised in one sentence: trying to find
out what the customer really wants and building it. Thus the modern
programmer has finally become a facilitator whose skill is not
programming, but making it possible that the customer and the technicians
can understand each other. So much for the theory.

3.1.3 Requirements Management and Engineering today

In reality, many ideas in requirements management and engineering
remained almost unchanged throughout the decades, although people
would not stop giving them new labels.

It appears to be fashionable these days to have many processes, methods
and maturity models at hand, but the impression remains that this is
blurring rather than clearing the picture. Many organisations and people
talk a lot about CMMI, RUP, SPICE, V model and others. We will go into
more detail with a selection of these maturity models in later chapters.

Only very few have understood that if things are properly done like they
should be done, most of the requirements of the common maturity or
capability models would automatically be met. This is not amazing, for the

28 3 Processes and Methods in Requirements Management and Engineering

better models only reflect the activities that should normally be carried
through in every larger project, nothing more nor less.

But instead of taking their time to realise this, organisations try to reach
a certain maturity level according to some capability model that is
currently “in”. They strictly follow the letters but have little understanding
of what they actually mean. It must be said, a few organisations are good
in following the letters, but many are not. The reason is that without the
deeper understanding and experience, the word will remain meaningless.
This is the main reason for organisations failing to introduce requirements
management and engineering processes and methods. They believe that if
they proceed as advised in some book on the subject, they will have a
functioning requirements management system within a couple of days.
This regularly turns out to be an illusion.

SPICE

RUP

CMMI

CMM

Software Process Improvement and Capability Evaluation (originally)
Software Process Improvement and Capability Determination (today)

Capability Maturity Model Integration

Capability Maturity Model

Rational Unified Process

V Model

Figure 3.6: Overview of currently fashionable maturitycapability models

This said, it is clear that we suggest the definition of the ends towards
which to work to be centre of interest, rather than formalities, however
smart they may be or appear. Never lose sight of why we are doing what
we do, and do not blindly follw a model.

 3.2 Common concepts in Requirements Management and Engineering 29

3.2 Common concepts in Requirements Management
and Engineering

From the previous section on the history of requirements management and
engineering it is clear that throughout the years a certain set of concepts
has formed that is usually common to all requirements management and
engineering approaches. As has been mentioned, the names of these
concepts may change, owing to current fashions, but the ideas behind stay
the same.

We will examine some of these basic concepts now and use this in later
chapters as the basic foundation from which we start our discussions on
the subject.

3.2.1 The systems engineering concept

The first of the most important concepts in connection with requirements
management and engineering is the separation of the various process
subjects or, as they are usually called, process areas into different
disciplines that although being closely related to each other can be
distinguished nonetheless. The following figure shows one common
separation.

Change
Management

Version
Management

Test
Management

Requirements
Development

Configuration
Management

Risk
Management

Quality
Management

Project
Management

Figure 3.7: Separation of project activities into different process areas

This separation or distinction is commonly called systems engineering.
It was soon found out that the more complex projects are best mastered
when the various necessary activities are grouped with respect to the main
subject they are associated with. This has a number of advantages.

30 3 Processes and Methods in Requirements Management and Engineering

One obvious advantage is that the whole lot of the project is cut into
more manageable pieces. This alone would be worth while, for the more
one goes into detail with each set of activities, the more reliable estimates
and plans will be.

A second reason for separating all the project activities into different
areas is that the project members can specialise in their respective fields of
expertise. Thus in larger projects there will usually always be a project
management staffed with people with experience in managing projects, a
risk management staffed with people with a background in risk detection
and management, a test management with experienced testers and so on.
There are very few larger projects today where in principle all staff are
able to carry out all activities at the necessary level of quality so that there
is no need to distinguish between certain activities.

Another reason to categorise the various project activities is the
possibility to examine the relationships between each of the different
categories of activities. This allows for a most effective planning and an
optimum performance. For example, once the activities are grouped as
depicted in figure 3.7, it may be realised that in a certain project the quality
management is not very closely related to the version management, but it
is very closely related to the test management. In this situation it may be
decided that it is not necessary for the quality manager to take part in
version management meetings, but that it is mandatory to take part in test
management meetings. It is seen from this simple example that the use of
resources can thus be optimised and costs minimised.

A fourth reason to separate the different tasks is the fact that each
process area may use different processes and methods to carry out the
necessary activities. Thus for example a project manager will usually use
methods to estimate the status of his project that are very much different to
the methods a test manager uses to build a test plan.

There are of course more aspects to the systems engineering approach,
but the examples shall suffice to show that there are good reasons to
proceed this way.

3.2.2 The requirements management concept

The second common concept is the requirements management idea. All of
the capability models currently used in the industry take requirements
management and engineering into account as being one of the most
important process areas. This is usually reflected in the fact that even to
reach the lowest level of maturity or capability in the state-of-the-art
models, there must be at least some kind of requirements management and
engineering.

 3.3 Processes and methods in Requirements Management and Engineering 31

This is not surprising, for requirements engineering is the term that
summarises all efforts to find out what shall actually be built, and
requirements management is the term that summarises all efforts to make
sure that the data created with requirements engineering remains valuable
and usable throughout a project. And it is of course clear that every
sensible project should not ignore the customer’s or end user’s needs and
wants, and that this should be so for all the project.

But the following chapters will show that there is much more to
requirements management than just a simple administration of a handful of
text pieces called requirements. Requirements management integrates all
the available project data with the available requirements data, thus
creating a flow of information for all of the different project members to
benefit. From this point of view, requirements management may be seen as
the heart of project information administration.

3.2.3 The process quality concept

A third central concept of systems engineering in general and requirements
management and engineering in particular is the idea of the process
quality.

The maturity models currently used try to measure how far advanced an
organisation is with respect to a certain systems engineering disciplines. In
order to do this, these models try to estimate the maturity and quality of the
processes that are applied for carrying out the necessary activities.

The underlying idea of such an approach is the belief that a high quality
of processes governing the development of a system will be reflected in
the quality of the system or product itself. Many examples exist that
support this point of view, relating repeatability of product quality to
process quality and vice versa.

3.3 Processes and methods in Requirements
Management and Engineering

Now that we have an overview of what requirements management and
engineering are and how they fit into the process landscape of a normal
project we will have a closer look at the various processes and methods
commonly applied.

The examinations starting here will continue in the following chapters,
where still more details and aspects will be introduced and explained. This
section is meant to give a rough introduction and overview of what

32 3 Processes and Methods in Requirements Management and Engineering

requirements management and engineering actually means in daily
business.

3.3.1 Requirements engineering

There are many definitions in the literature of what requirements
engineering is. We use the term requirements engineering to indicate that
within this process area, requirements are created or engineered. Thus a
totally equivalent term would be requirements development.

In requirements development or engineering the main process that takes
place, according to the HOOD Group’s point of view, is the requirements
definition process.

This process contains all activities that are necessary in order to develop
requirements and is separated into two sub processes:

• Definition of scope
• Definition of requirements

The first of these two sub processes, the definition of the scope, can be
further separated into three main activities:

• Identifying interfaces
• Defining interfaces
• Defining stakeholders and roles

The second sub process as listed above can also be separated into a
small number of key activities:

• Elicitation
• Specification
• Analysis
• Review

All the activities introduced here together with their meaning will be
explained in detail in the following chapters. In the meantime it may
suffice to note that all these activities can take place at the same time. It is
one of the secrets of an efficient requirements management and
engineering philosophy that most of the work can be carried out in parallel,
although many process models implicitly or explicitly suggest that there be
a certain order of the single activities.

Some of the methods commonly applied for identifying and defining
interfaces, stakeholder and roles and for elicitation are:

• Modelling
• Document analysis

 3.3 Processes and methods in Requirements Management and Engineering 33

• Checklists
• Brainstorming
• Mind maps
• Interviews
• Observation
• Use cases
• Scenarios and stories

These methods can be used for example to identify and define
interfaces, stakeholders and roles as well as to elicit requirements. As
maybe not all readers are familiar with the above terms, one or two
sentences shall be spend in order to give brief explanations.

Modelling: basically, a model is a copy of a certain finite fraction of
reality. As such, a model may contain less detail or information than the
original, but never more. In more practical terms, a model may be anything
describing a certain aspect of reality from plain text to a picture. In this
sense modelling is not really a method in its own right, but many methods
are modelling techniques.

Document analysis: as the overwhelming majority of development
projects nowadays have some kind of predecessor projects, large pieces of
the necessary information are usually gained by the analysis of existing
documentation, for example old requirements specifications, old
stakeholder lists and so on.

Checklists: this term is rather self-explaining. Checklists are used to
make sure that none of the most important activities or pieces of
information has been accidentally left out. Checklists are a simple and
effective way of embedding knowledge in an organisation.

Brainstorming: the idea of a brainstorming session is to produce a lot of
ideas, associations and the like in a very short amount of time, thus
building a first basis for a development project to lift off from. This is
made possible by the strict rule that during the brainstorming, no criticism
is allowed. Only after the phase of free association, the various concepts
and ideas developed are analysed for feasibility and so on.

Mind maps: a mind map is a graphical representation of associations
with a certain subject. Usually, the main subject is centred in the middle of
a piece of paper, and the main ideas and thoughts in connection with that
subject are ordered around the centre. Every such main idea builds another
centre around which sub ideas and more detailed associations can be
grouped.

Interviews: an interview is simply asking someone directly for his
opinion on a certain subject. Experience shows that although this idea is
quite obvious, it is usually one of the least effective methods. It may be
necessary but it is not sufficient.

34 3 Processes and Methods in Requirements Management and Engineering

Observation: many data and important pieces of information can be
gathered by simply observing people doing something. As observation
usually has a touch of secrecy, this method may appear unethical to some.

Use cases: use cases are a combination of graphical and textual
representations of one or more ways in which to use a system to be
developed. As such, they are a typical case of modelling. Use cases
became a fashion some two or so decades ago when it was found that the
customers of complex systems usually understand a picture much easier
than for example a piece of source code.

Scenarios and stories: scenarios and stories are similar to use cases in
that they may use graphics and text to describe possible ways of using a
system to be developed. Some people use scenarios to cover many more
ways of using the system than use cases.

For the specification of requirements, typical methods that may be used
are:

• Templates
• Quality criteria
• Weak word analysis

Templates: there may exist templates for tables of content, which will
support in structuring the requirements during specification. There may
also be templates for example for the syntax of single sentences.

Quality criteria: requirements are usually specified according to some
quality standards that are defined through quality criteria. Typical criteria
for requirements are identifiability, traceability, atomicity and lack of
redundancy. It is important to note that these quality criteria must be
agreed on before the requirements are specified.

Weak word analysis (Quality Check): we call a word a weak word if it
transports little information blurs what should be expressed. Typically,
adjectives and adverbs are weak words, for example “really fast”, “not too
slow” and so on. Instead, depending on why the requirements are being
written it is sometimes be better to say “faster than 100 kp/h”, “no quicker
than 10 pieces per second”. However, if the aim of writing and publishing
requirements is to trigger innovation, then it might be better to say “really
fast” in a customer requirements specification to see what the various
suppliers can supply. This type of requirement that at first sight appears
weak is in fact really useful for guiding a choice between various offers.
Rather than specifying a maximum cost for a project, it can be beneficial
to specify that low cost is important to see from a selection of potential
suppliers what is possible.

For the analysis and review of requirements there are various special
methods. Many people have their own favourite. The trick is to do what is
best suited to the current situation rather than blindly following a recipe

 3.3 Processes and methods in Requirements Management and Engineering 35

without understanding it. The basic activity during analysis is evaluating a
certain subset or all of the requirements with respect to the quality criteria
agreed on before the specification, and this simply means studying all
relevant requirements. During the review the only task that has to be
carried out is making the decision whether a requirement or a set of
requirements can be accepted as is, or has to be rejected, or must be
revised before being analysed and reviewed again.

3.3.2 Requirements management

As has been briefly mentioned above, we define requirements management
to be the set of activities which ensure that the requirements information is
always up to date and can be accessed by all project staff that may benefit
from it. In other words, requirements management integrates all relevant
pieces of information from all the other systems engineering disciplines. A
more complete and detailed definition will be given in the following
chapters.

It is seen from figure 3.7 that the main process areas associated with
requirements management are:

• Project management
• Quality management
• Risk management
• Configuration management
• Version management
• Test management
• Change management
• Requirements engineering

As requirements management integrates requirements engineering with
all the other systems engineering disciplines as listed above it is hard to
define a requirements management as a single process.

Rather, the requirements management process is a collection of
processes that all interface with requirements engineering. Thus for
example, whenever there are changes in a project, the requirements
documentation must be changed accordingly. To give a second example,
the requirements must be filterable or selectable with respect to the various
product versions.

A selection of some of the most common concepts or methods of
requirements management is given as follows:

• Identifiability
• Filterability

36 3 Processes and Methods in Requirements Management and Engineering

• Traceability
• Linking
• Additional information
• User rights

Identifiability: Requirements management has to make sure that each
single requirement is identifiable. Although this may seem superfluous for
very small projects, people usually soon find out that if they always have
to talk about “the third sentence of the second paragraph on page number
five”, misunderstandings and errors are almost inevitably. In a simple
approach identifiability can be reached by giving each requirement a
unique number. It is important to note that even when requirements are
deleted, their identifier should not be assigned a second time, for this may
cause misunderstandings and ambiguities. Problems with this very
common approach can arise when more than one requirements document
or specification has to be managed. In such a situation it is very likely that
one number has been assigned more than one time in different
specifications. Adding a unique prefix to the number for each individual
specification resolves this problem, and finally all requirements are really
uniquely identifiable.

Filterability: It will be seen in the following chapters that a functioning
requirements management focuses on information rather than documents.
For example, keeping all requirements in one place allows for a central
administration of this important information, and all relevant project staff
may access all existing information. There are many advantages to keeping
the information together and only extracting what is needed at the moment,
instead of having distributed and fragmentary pieces of information all
over the place. One such advantage is the possibility to maintain all
existing information and keep it consolidated, which would otherwise be
probably impossible. This approach is also motivated by the fact that
usually data bases are used to administer the requirements and associated
information. If people share a common data pot it is necessary that they
can all extract the pieces of information that are currently necessary. For
example, a test manager will need other information than the project
manager. Thus filterability of the information is a mandatory precondition
for shared information. But even with regard to only one person, say the
requirements manager, it is necessary to filter the information, for example
to create requirements specifications for different versions of the product.

Traceability: How far traceability can go will be shown in the following
chapters. For the moment we note that in principle traceability covers at
least two important aspects: the first aspect is traceability between various
pieces of information at one point in time, for example traceability
between customer requirements and system requirements. The second

 3.3 Processes and methods in Requirements Management and Engineering 37

aspect is traceability of one single piece of information throughout time,
for example how one requirement changed during the course of a project.
As the second aspect is usually closely related to what is commonly called
change management or change history, we will limit the concept of
traceability to the first aspect from here on. As a consequence, traceability
and linking (see next paragraph) are two terms that are more or less
interchangeable.

Linking: This term is commonly used in the requirements management
and engineering literature for the documentation of relationships between
different pieces of relevant information associated with requirements. For
example, linking the requirements information to the test information
means documenting somehow which requirements will be tested by which
test cases and which test cases cover which requirements. If unique
identifiers as described before are used, linking can be a simple text entry.
In our example, the identifiers of the requirements covered by one test case
can be entered so that they can be identified as belonging to this test case,
and the identifier of the test case can be entered in each requirement. This
would represent a bidirectional traceability between tests and
requirements. Commercial requirements management tools usually offer
the possibility to create such linking in a more or less comfortable way.

Additional information: Another important method in requirements
management is the separation of the requirements information from
additional information. Note that this separation is not always obvious and
may be carried out in more than one way. The additional information is
commonly stored in attributes that are defined at the beginning of a
project. Once an attribute is defined it means that every requirement will
possess this attribute, and this usually means that this attribute must be
filled in and maintained for each single requirement. Typical examples of
such additional information that belongs to a requirement but should not be
part of the requirements information itself are the identifier, the author, the
date of creation, the owner, comments, priority and so on. The link
information described in the previous paragraph can easily be stored in one
attribute.

User rights: One very important aspect that must be taken into account
in requirements management is the question of user rights. Since all
project members share one common pot of information as has been
described above, there have to be rules regarding the administration of this
information. For example, the test manager must usually be able to see the
requirements information, but there may be no need at all for him or her to
be able to change this information. Therefore an information access policy
must be defined and implemented to make sure that data is only seen and
edited by a certain number of people and according to certain rules.

38 3 Processes and Methods in Requirements Management and Engineering

3.4 Summary

This chapter continues the brief introduction given in the previous chapters
on requirements management and engineering.

To this end its history is briefly repeated, from which it is seen that the
modern idea of a requirements management and engineering approach for
development projects has been born together with the first commercially
available computer systems. It is shown how the main job of a programmer
has changed from writing code to finding out the needs and visions of the
customer.

The most common concepts in requirements management and
engineering are presented, amongst them the systems engineering concept
and the process quality concept. The systems engineering concept divides
all project activities into different process areas, and the process quality
concept is the believe that a high process quality will be reflected in the
quality of the products created by these processes.

An overview is given of the most important processes and methods in
requirements engineering and requirements management. In requirements
engineering, the two main processes according to the HOOD model are the
definition of the scope and the definition of the requirements.

The definition of the scope can be separated into three main activities,
the identification of the interfaces, the definition of the interfaces and the
definition of the stakeholders and their roles. The definition of the
requirements can be divided into the elicitation, the specification, the
analysis and the review. Typical methods applied during the identification
and definition of interfaces, stakeholders and roles and during the
elicitation are modelling, document analysis, checklists, brainstorming,
mind maps, interviews, observation, use cases, scenarios and stories.
Typical methods that may be used for the specification of requirements are
templates, quality criteria and weak word analyses.

In requirements management it is not easy to define a process as such,
for requirements management integrates requirements engineering with all
other systems engineering disciplines and thus is rather a collection of all
the processes that interface with requirements engineering. The systems
engineering disciplines whose interfaces to requirements engineering are
analysed in this book are the most prominent. They are project
management, quality management, risk management, configuration
management, version management, test management and change
management.

Some of the most important concepts of a functioning requirements
management are presented and explained briefly. These are identifiability,
filterability, traceability, linking, additional information and user rights.

4 Introduction to Requirements Engineering

This chapter introduces and defines requirements engineering,
requirements development, and the HOOD requirements definition
process.

4.1 History of Requirements Engineering

In the 1970’s the need for creating, understanding, and agreeing
requirements specifications was not questioned. It did not have a fancy
name it was just engineering. Engineers were trained to produce
specifications in whatever method of presentation was necessary. This was
sometimes text, sometimes tables of data, and very often drawings were
used.

All of these specifications and methods of documentation produced
models of the system. We did not talk about modeling, we spoke of
requirements specifications. And these specifications were used as the
basis for tests when product was created.

In the 1970’s customer needs were documented in a customer
requirements specification.

In the 1980’s it was thought that the word customer was too restrictive.
The word customer could unfortunately be understood to represent only
the requirements of the person paying for the system. To combat this the
word user was used. Customer requirements specifications became user
requirements specifications.

In the 1990’s it was considered that the use of the word “user” was too
restrictive, and could give the impression that only the end-user was
considered, possibly ignoring all requirements for such things as Test,
Maintenance, Sales, and Transport. So in the 1990’s the word stakeholder
came into fashion. User requirements specifications became stakeholder
requirements specifications.

During this time the processes used for ensuring that requirements
specifications were of the correct quality (correct, up-to-date, complete
etc.) became known no longer as just plain old Engineering, but now it was
to be known as requirements management.

40 4 Introduction to Requirements Engineering

Around the turn of the millennium some people started to refer to
requirements management as requirements engineering. Quite soon these
terms, originally identical, started to get different meanings. All of these
meanings were of course correct. We use words to mean whatever we want
them to mean. It was just such a huge shame that changing the meaning of
words introduced such a lot of misunderstanding and strife.

Humpty Dumpty took the book and looked at it carefully. ‘That seems to

be done right --' he began.
 ‘You're holding it upside down!' Alice interrupted.
 ‘To be sure I was!' Humpty Dumpty said gaily as she turned it round

for him. ‘I thought it looked a little queer. As I was saying, that seems to be
done right -- though I haven't time to look it over thoroughly just now --
and that shows that there are three hundred and sixty-four days when you
might get un-birthday presents --'

 ‘Certainly,' said Alice.
 ‘And only one for birthday presents, you know. There's glory for you!'
 ‘I don't know what you mean by "glory",' Alice said.
Humpty Dumpty smiled contemptuously. ‘Of course you don't -- till I tell

you. I meant "there's a nice knock-down argument for you!"'
 ‘But "glory" doesn't mean "a nice knock-down argument",' Alice

objected.
 ‘When I use a word,' Humpty Dumpty said, in rather a scornful tone, ‘it

means just what I choose it to mean -- neither more nor less.'
 ‘The question is,' said Alice, ‘whether you can make words mean so

many different things.'
 ‘The question is,' said Humpty Dumpty, ‘which is to be master -- that's

all.'
Alice was too much puzzled to say anything; so after a minute Humpty

Dumpty began again. ‘They've a temper, some of them -- particularly
verbs: they're the proudest -- adjectives you can do anything with, but not
verbs -- however, I can manage the whole lot of them! Impenetrability!
That's what I say!'

 ‘Would you tell me please,' said Alice, ‘what that means?'
 ‘Now you talk like a reasonable child,' said Humpty Dumpty, looking

very much pleased. ‘I meant by "impenetrability" that we've had enough of
that subject, and it would be just as well if you'd mention what you mean to
do next, as I suppose you don't mean to stop here all the rest of your life.'

 ‘That's a great deal to make one word mean,' Alice said in a thoughtful
tone.

 ‘When I make a word do a lot of work like that,' said Humpty Dumpty,
‘I always pay it extra.'

 4.1 History of Requirements Engineering 41

 ‘Oh!' said Alice. She was too much puzzled to make any other
remark.‘When I use a word,' Humpty Dumpty said, in rather a scornful
tone, ‘it means just what I choose it to mean -- neither more nor less. '

Words from Through the Looking Glass by Lewis Carol
http://www.sabian.org/alice.htm

Some people use requirements management with its original meaning,
some use requirements management to include requirements engineering,
some use requirements engineering to include requirements management.
The HOOD Group use the term “requirements management and
engineering” to mean the sum of requirements management and
requirements engineering. Requirements management is the sum of the
interfaces between requirements development and all other systems
engineering disciplines such as configuration management and project
management. HOOD use the terms requirements engineering and
requirements development interchangeably. Requirements development is
defined by SEI in the CMMI specification to be “…to produce and analyze
customer, product, and product-component requirements.” My advice to
you is to use whichever words your customer uses and ensure that all
people involved share a common understanding. It is no accident that
words used in this book are defined in Chapter 1. We hope that you
encounter the words and learn their definition before you need to
understand and use them.

In the 2000’s the strict interpretation of stakeholder led some people to
think that a stakeholder requirements specification should include
requirements from all stakeholders, even those stakeholders further down
the chain of requirements specifications from suppliers. This unfortunately
led to what should basically be a documentation of customer requirements
becoming a documentation of not only the customer requirements, but also
the solution being supplied, and many other requirements from
stakeholders that had no connection with the customer. Some customers
even edited their documentation so it appeared that their requirements
were identical to the systems requirements as written by the suppliers. This
is not the intention of a specification supplied by a customer. The intention
of a requirements specification has remained the same during the 30 years
that I have been associated with the industry. That is, a requirements
specification supplied by a customer is intended to define what is to be
achieved by whatever the customer is buying, and also to define the
constraints which have to be conformed to when supplying a solution.
Constraints are requirements that restrict the choice of solution, for
instance underground trains supplied for Munich in Germany have to be
the blue colour of the Bavarian (Southern German) flag. I would include a
picture of the Bavarian flag but this book is due to be printed in black and
white only. Oh why not, you can imagine the colours.

42 4 Introduction to Requirements Engineering

Figure 4.1: Bavarian flag (white and blue)

So in the 2000’s the requirements specification supplied by a customer
is once again known as a customer requirements specification. If you do
not like this I am sure that you need only wait a while. It has taken 30
years for changes to arrive back to where we started.

The more things change the more they stay the same.

1970

1980

1990

2000

Engineering Customer
Requirements
Specification

Product
Specification

Engineering User
Requirements
Specification

Functional
Requirements
Specification

Requirements
Management

Stakeholder
Requirements
Specification

System
Requirements
Specification

Requirements
Management &
Engineering

Customer
Requirements
Specification

System
Requirements
Specification

Figure 4.2: The history of requirements engineering at a glance

4.2 HOOD Requirements Definition Process

4.2.1 Aim of this part

In this part, first a general definition of a process is worked out, followed
by the specific case of the HOOD requirements definition process. This

 4.2 HOOD Requirements Definition Process 43

allows the differences and similarities between requirements definition and
requirements development to be defined and understood. Requirements
development is a term used and defined by the Carnegie Mellon University
as part of the CMMI specification. We use the terms requirements
engineering and requirements development to be interchangeable. We
acknowledge that there are many varied and contradictory definitions
currently used.

This chapter Introduction to Requirements Engineering is included
because requirements management is defined as the interface between
requirements engineering and all the other systems engineering activities
and processes. To understand better this interface we need to understand
both sides of the interface.

4.2.2 What is a Process?

According to the IEEE, a process is “a sequence of steps performed for a
given purpose“. This simple definition is too restricted, and in practice
leads some people to think that a process is like a straightjacket and is
designed to prevent movement.

Elicit

Specify

Analyse
(Quality Check)

Review

End

Start

Figure 4.3: Requirements definition process shown as a flowchart with
unnecessarily strict sequence restrictions.

44 4 Introduction to Requirements Engineering

Many people define a process by specifying a flowchart with a straight
flow, which is a set sequence of activities to be performed. This may be
correct but is often not what is intended nor required. Consider the above
simple process for requirements definition. In this simple example only
activities and the sequence for performing the activities are shown.

But what does the flowchart mean? Does it mean that no specification
may be done before the elicitation is finished? Does everything have to be
complete before the first review can take place?

This is what is suggested by a strict interpretation of the flowchart. And
indeed it is unfortunately how many people choose to interpret some
process specifications.

In fact the four activities described thus far do not have to be sequential.
Years of using flowcharts and dealing with sequential computers based on
von Neumann architecture have led some of us to believe that activities
can only be performed sequentially. What about using a team to perform
the activities?

Figure 4.4: Showing that activities can be performed in parallel

The picture above shows that even when there is a data flow the
activities may be done at the same time and not necessarily one at a time.
Indeed mostly when eliciting requirements it is quite normal to specify at
the same time to get a fast feedback and a confirmation that all concerned
have achieved a common understanding. We do not have to stop eliciting
and specifying just because someone is checking work already done.
Indeed we might start by specifying requirements as an elicitation
technique. Do not get caught up by the restricted views of those that see
the world as a strict sequence of events with no flexibility.

The Software Engineering Institute (SEI) of Carnegie Mellon University
expands upon process to define a software process as „a set of activities,
methods, practices, and transformations that people use to develop and
maintain software and the associated products“. This is an improvement on
two counts; it removes the idea of a process necessarily having a set

 4.2 HOOD Requirements Definition Process 45

sequence; and it introduces the idea that process is used by people. I
wanted to write that the second point is particularly important, but then
again so is the first! So many process improvement attempts fail because
of a feeling of users of the process being unnecessarily restricted, often due
to a misguided definition or interpretation of a process specification. So it
is important to consider people as part of the process, and therefore to
consider flexibility where possible and where necessary.

Process

Activities

Methods

Tools
Pe

op
le

Figure 4.5: A process specification consists of more than just activities

The activities of the HOOD requirements definition process are
described in the following section.

4.2.3 The activities of the HOOD Requirements Definition
Process

The activities of the HOOD requirements definition process consist of
more than the four basic activities we have discussed so far, that is; Elicit,
Specify, Analyse (Quality Check), and Review (Approve). These four
activities do form the heart of the process, and they are necessary but not
sufficient.

This section includes descriptions of the aims of the four basic activities
and develops an argument to support the need for further activities.

4.2.4 Modelling

We have seen in the previous section that a process consists of a set of
activities, which will be executed using methods, which may be supported
by tools. To execute the four basic activities listed above we could use
various methods. Many people consider the act of modeling to be a
requirements definition activity. But when asked why this activity is done

46 4 Introduction to Requirements Engineering

they may not have an answer. If you are feeling mischievous ask your tool
vendor why they use graphical modeling techniques. The answer should be
to support whichever of the other activities you are performing! Modeling
is not an end in itself; it is a means to an end. Some people think that
modeling is just something that one does for its own beauty. These are the
sort of people who talk a little louder when explaining the points on which
their reasoning is not fully thought out. This may be why some of the
really good modelling tools are used to create models that are never used.
The models just gather cyber dust and grow old. But modeling is great!
Modelling is one of the least understood and least exploited things we do
in requirements management and engineering. Modelling is done to
support other activities. One might say that it is not really an activity, but
more like a classification of methods used to perform activities.

Analyse

Specify

Elicit

Review
M

od
el

lin
g

Figure 4.6: Modelling is performed to support other activities

Please do not misunderstand our views on modeling. At HOOD we are
firm supporters of and experts in the use of models and also work closely
with partner companies that do little else other than support customers
improve their modelling expertise.

4.2.4.1 Scope

As an input to the above activities we need to consider the context within
which the system being defined will operate. We need to consider what is
inside the system and what is outside the system. Without a clear and
shared view of what is the system and what is outside of the system any
development consisting of more than one person is almost bound to fail or
take an inordinate amount of time. Wasting time is also a failure. So the
scope of a system under consideration needs to be defined, communicated,
and understood.

When considering scope most people think immediately of system
boundaries and physical interfaces. This is good as far as it goes. But it

 4.2 HOOD Requirements Definition Process 47

does not go far enough. Later we will discuss the role of people and
systems interfacing to the system under development.

A physical interface to a system has at least two aspects; the static
interface, and the dynamic interface.

A static interface consists of such things as port numbers for computers,
pin allocation for electronic hardware, and size of fitting for mechanical
constructions.

A dynamic interface consists of such things as data and the meaning of
data (information) which may vary with time through a computer port,
voltages and the meaning of certain voltages which may vary with time for
electronic systems, and movement for mechanical systems.

Considering an alternative view of systems, lets move away from the
purely physical view of the interfaces as seen from within a system, and
consider the systems within the enclosing environment including people
with interfaces to the system under development. It is necessary to ensure
the elicitation of the requirements of people who are to use the system, and
those affected by the system either by its use or abuse. We call these
people stakeholders. It is sometimes advantageous to also consider as
stakeholders the systems with interfaces to the system under development.

I have had many discussions with colleagues from previous employment
about the definition of the term stakeholders, so please excuse me distilling
my experience to you here.

For the purpose of defining requirements it is necessary to collate
requirements from all roles which may affect, and are affected by, a
system. During this collection it is necessary to know what role a
stakeholder has, the better to understand their requirements.

Requirements may be defined which influence the system under
development during various phases including; inception, development,
commissioning, use, maintenance, upgrading, retirement, and disposal or
recycling.

The reason why I have switched to talking about defining requirements
for roles rather than stakeholders is that it is often impossible, or not
preferred, to spend the time (time is money) speaking to every possible
user of a system. It is normally sufficient to capture requirements from a
suitable selection of users, at least covering all roles. The trick here is
defining and understanding “suitable”. The reason we attempt to capture
requirements from all roles is to be effective in an attempt to get a full set
of requirements. The reason we might not capture requirements from every
stakeholder is to be efficient in our use of resources.

Let us consider a one-off system made for a specific customer involving
few stakeholders. It is highly likely that we might try to capture
requirements from all stakeholders. But if you were producing cars for the
mass market would you attempt to capture requirements from everyone

48 4 Introduction to Requirements Engineering

that purchased your cars? Perhaps not. But I am told that Nissan Cars do,
and that Nissan have the top customer satisfaction rating of all mass car
manufacturers! Why could that be?

Our customers are like our eyes toward the future: they show us where
to go. Knowing what concerns our customers, what they are not satisfied
with—listening carefully to the voices of our customers is the very starting
point for our business.

For example, there are certain things that may be hard to elicit from a
survey or questionnaire: the comfort of a driver’s seat or changes to car
parts over the years. With this in mind, employees who work on the cutting
edge of new car development and production personally conduct In-Car
Interviews to get important feedback from our customers.

Technical engineers all over the world, as part of their routine work,
have the opportunity to ride along with customers in their cars and receive
their frank opinions. The feedback gained during these one-on-one
sessions provides important input for our new product development.

Our Customer Support Center also helps us get important feedback.

Our Japan Support Center, for example, gets over 180,000 calls per year
with questions, complaints, and praise. This outlet helps clue us into a
wide array of opinions, which we then collect and analyze. The
information gets posted on our company-wide intranet system and is used
in many areas to make quality and service improvements. We have seen
many real examples of how customer feedback has led to opportunities for
improvement. Our major global operations also actively utilize input from
our customers.

Nissan Sustainability Report 2004 (http://www.nissan-global.com)

Just to be sure that we have the same understanding of stakeholders and

roles, here is a short example.
We take the example of a requirements management and engineering

training course with 10 participants in a training room. What activities are
to be done? The course needs to be designed and written, course material
may have to be printed, the date for the course has to be agreed and
published. The room has to be booked. Is over-night accommodation
necessary for the trainer or any participants? The course has to be
delivered to the participants. Feedback will be collated at the end of the
course. Requests for payment for the cost of the course must be sent.
Payment for the course must be received. People must be able to know that
the courses are available so probably some promotion will be done.
Hopefully the course will make a profit.

The people available to perform the tasks are Bob, Claudia, Charles,
Gabi, Mascha, and Urte, plus of course the participants in the training.

 4.2 HOOD Requirements Definition Process 49

When defining requirements with whom do we need to get requirements
from? Let us see how the two scenarios could work in practice. The
following table links task to roles to stakeholders.

Tasks / Roles / Stakeholders

Design training.
Write course.

Task StakeholderRole
Author Charles

Urte

Advertise training. Marketing Gabi

Print training mat-
erial.
Send request for
payment.
Receive payment.
Book training
room.
Book accomo-
dation.

Administration Claudia
Mascha

Give training.
Collect feedback.

Trainer Bob
Charles
Gabi
Urte

Make profit. Employees Bob
Claudia
Charles
Gabi

Take part in
training.

Participant

Figure 4.7: Table showing relationship between roles and stakeholders

We can see from the above table that roles may be performed by one or
more stakeholders, and stakeholders may perform one or more roles.

So back to our question; who do we get requirements from? We could
try to elicit requirements from every stakeholder, or we could try to elicit
requirements from representatives from every role. Consider the case
before the course is written, the participants might not be known so
someone will have to represent their views. This is often seen as a part of
the role of marketing, to be a surrogate for customers.

It is very important when eliciting requirements that a stakeholder
understands on behalf of which role they are providing information. We
have seen above that a stakeholder may perform more than one role, and it
is possible that they give their major role precedence and neglect any
secondary role.

If we tried to get requirements from everyone we would have to deal
with sixteen people, that is six employees and ten participants. If we were
more efficient we could choose three people for example: Charles,
Claudia, and Gabi. This is possible because this is one of the combinations
of people which cover all roles, with Gabi representing the concerns of the

50 4 Introduction to Requirements Engineering

participants. To be more effective, after the course was given we would
collate requirements from feedback of participants and others, and use this
information to improve the course iteratively.

As an input to the aforementioned activities of requirements
development we need to provide information pertaining to the scope. As
discussed above we can consider this to be physical interfaces and also a
list of stakeholders and their roles. The four activities of the HOOD
requirements definition process are supplemented by the activities of
identify interfaces, define interfaces, and define stakeholders and their
roles.

initiate project
(process tailoring, ...)

create design, derive
requirements

elicitation specification
m

od
el

lin
g

analysis review

identify
interfaces

define
interfaces

define stakehol-
ders and roles

de
fin

iti
on

of
 s

co
pe

de
fin

iti
on

of
re

qu
ire

m
en

ts

Figure 4.8: The HOOD requirements definition process

The above diagramme shows that there are 2 major parts to the HOOD
requirements definition process. Definition of scope and definition of
requirements. Strictly the scope is also a requirement, but we separate it
here to show its importance. In practice it is also easier to think of these
parts as separate but related. Normally the scope is defined before the work
on defining requirements begins in earnest. For instance a systems
integrator such as a car manufacturer will have performed some systems
engineering work to define their system in terms of subsystems and their
interfaces. We could also say they have defined their product in terms of
components and their interfaces. It is also normal that the definition of the
scope is changed during the requirements definition activities as more
information becomes known. Many people complain that the requirements

 4.2 HOOD Requirements Definition Process 51

change during a project, but this is better than not correcting incomplete or
incorrect requirements. The definition of the sub-systems may be passed
onto the next stage, often an external supplier, with the definition of
interfaces in the form of constraint requirements, and requirements and
use-cases defining the expected use of the sub-system.

Analyse

Elicit

Review Specify

Modelling

- Scope
- Input Requirements
- Structure

- Approved Requirements
- Traceable to input Requirments

Figure 4.9: Requirements definition with scope being an input

The above diagramme shows the process as a machine or a rotating
drum which churns away deriving approved output requirements from the
input requirements. The diagramme deliberately does not place any
restrictions on the sequence of the activities nor the number of iterations it
takes to produce approved requirements. Structure is shown as an input as
often there it is required to produce information in a particular structure,
for instance certain documents may have to be produced. If structure is not
given as an input to the process the process itself must create some
structure to enable requirements to be read in context and to facilitate
requirements to be found when searched for. It is very important that a
group work together using a common information model. This facilitates
sharing information and re-use of information such as requirements and
tests.

The input not shown on the diagramme is the energy that powers the
machine which is engineering innovation. The diagramme shows that
approved requirements are produced or derived based upon input
requirements and other information. There might be a slight problem with
considering the requirements to be derived, as if there is no choice
involved in the production of requirements. The use of the word “derive”

52 4 Introduction to Requirements Engineering

is not meant in a mathematical sense, but merely that the output
requirements are based upon the input requirements. Normally each stage
of the overall requirements development process that uses requirements
definition brings us closer to the implementation. That is, each stage of
requirements definition normally introduces more constraints on how the
system is to be implemented. This cannot be automated; we still need the
innovation of human thought. Each stage gets deeper into the solution
domain. More of this later when we discuss requirements development.

4.2.4.2 Elicit

Eliciting requirements has been described as being as difficult as herding
butterflies. But personally I do not think it is that easy.

Elicit means to draw forth or bring out (something latent or potential). A
synonym is educe. But see how similar the act of eliciting is to seduction.
Just following the rules is not enough.

There are some people who are good at eliciting requirements, and some
who are not. There are some people who are good at seduction and some
who are not. Some can learn to elicit and some will never be able to learn.
Some can learn seduction, and some will never learn.

Just asking a stakeholder what their requirements are rarely works. It is
said that the customer is always right. Well that may be. In fact the
customer is always busy and normally has far more urgent things to do
rather than speak to someone in a suit about requirements for a system that
is not even due to be delivered within 2 years.

The first thing to be sure of when eliciting requirements is that we have
to get the stakeholder into a state in which they want to talk to us. To
return to our comparison with seduction, you had better be sure that the
house is tidy and the baby is not crying.

4.2.4.3 Specify

We specify to convey to others the requirements that we have elicited. The
most important person to communicate this information to is the person
from whom the information has been elicited. If the stakeholders do not
recognise and agree with their own requirements then we have no basis on
which to build.

There are many methods for specifying requirements. A choice must be
made so that the people or machines that need to understand can actually
understand.

Around 1985 I introduced to an organisation a method of specifying
requirements supported by a graphical language. We had tremendous

 4.2 HOOD Requirements Definition Process 53

success within the organisation and the quality of work increased
dramatically, and timescales reduced dramatically.

There was one problem. The customers did not fully understand the
diagrammes we were using. We see the same mistakes being made today
with UML. Some suppliers assume that their customers will understand
UML and make people feel stupid if they do not understand. This is no
basis for seduction and does not work for requirements elicitation. Not
everyone is strong enough to admit when they have not understood, and
we have seen long drawn out expensive discussions about everything other
than the real problem.

When specifying requirements we must ensure that all parties
understand what is being documented. We have to speak the language of
our customer.

What do we do if requirements from various stakeholders conflict? To
start with we have to document the requirements otherwise they may be
overlooked. Specifying requirements does not consist of just writing down
what we understood was said. We need to document requirements and then
sort out the conflicts. In order to create a consistent set of requirements we
need to consolidate the set of requirements. Consolidate can have many
meanings such as merge or combine. More than just merging the set of
requirements, what we mean by consolidation is to remove inconsistencies
to produce a consistent set.

Theoretically one might prioritise requirements and take the
requirements with the highest priority. There are problems with this; i)This
might result in an inconsistent set of requirements ii)giving requirements
priorities is difficult and full of internal political challenges such as
organisations that only allow high priority requirements, and iii) it is often
not the requirements that are actually prioritised but the stakeholders that
own the requirements. To put it simply the boss normally gets his way.

Setting priorities is a great idea but some (most) organisations are not
mature enough to do this successfully. Setting priorities helps us to
understand the results of tests that show that not all requirements have
been fulfilled. So what? Is the system usable and is it worth delaying
acceptance for a few requirements? If we have not properly prioritised
requirements in advance of the tests we are forced to start negotiations
when we are under pressure to commission the system.

Despite the problems outlined above, I implore you to document how
important requirements are, and how urgent requirements are.

4.2.4.4 Analyse (Quality Check)

Analysis of requirements has been used to mean many things. Tom de
Marco used the term Structured Analysis to mean a process used to

54 4 Introduction to Requirements Engineering

understand requirements and to facilitate achieving a common
understanding between parties. Analyse is also used in general terms to
mean; study, examine, investigate, scrutinise etc. We use the term here to
mean a quality check. Requirements are assessed with respect to quality
criteria. The result of the analysis is used as an input to the review activity.
The result of the analysis is a measure of quality. A measure of how well
the quality criteria have been fulfilled.

Some organisations refer to the activity of analysing the quality of
requirements as “Inspection”. We believe that this is more likely the name
of a method used to perform the analysis. It is very easy to mix up the
methods with the activities but this can cause confusion. Keep clear the
activity that is being performed as this defines the aim of what we are
doing. If we concentrate on methods and do not consider for which activity
the methods are being used we might loose sight of what we are doing.
Some methods may quite legitimately be used for a variety of activities, so
keep the activity in mind. Do not blindly always use the same methods.
Consider the activity and choose the methods that best fit the situation
each time.

4.2.4.5 Review

Once again the nomenclature used in our industry is poorly defined so for
clarity we state here what we mean.

Review

Analyse
(Quality Check)

Activity Description
Requirements are assessed with re-
spect to predetermined quality criteria

Review Meeting
(Approval)

Decide if requirements or a document
are acceptable or if improvement is
required before approval may be
granted

Improvement To improve a document or require-
ments following a review, and in pre-
paration for the next review; this will
normally involve another iteration of
elicitation and specification

Figure 4.10: Analysis and Review

An input to the review activity is the result of the analysis (quality
check) activity. It may be decided on the balance of needs that a
requirement or set of requirements might be accepted and therefore
approved even though not all quality criteria are fulfilled. For instance
requirements might be incomplete or not exactly unambiguous but the risk
associated with this might be acceptable compared to the delay that would
be needed to rework the requirement or document.

 4.3 Requirements Development and Requirements Engineering 55

This is why the activities of Analyse and Review are separate. Just
because a quality requirement is not fulfilled does not mean that the
requirement or document is unacceptable. The people performing each
activity need different skills. The person performing the analysis needs to
be able to deal with large amounts of detailed information. The person
performing the review needs to see the big picture and be prepared to
accept a compromise, to understand and take a risk, and be prepared to
take the consequences.

A mistake that some beginners make is to assume that all requirements
need to fulfill all quality criteria all the time. Having read a book is not
enough. Having a list of quality criteria is not enough. You need
experience and you need to be big enough to balance needs.

Who should be invited to review requirements?
The easy answer is to invite all stakeholders. But this will normally not

work. The cost will be enormous and the likelihood of everyone being
available is slim. Similar to selecting stakeholders for eliciting
requirements, a sub-set of stakeholders is more efficient.

Consider roles of those who need to use the requirement or document.
Do not forget those responsible for testing; they know what a good
requirement is, or at least they know a bad requirement when they see one.
Think of designers that need to design a solution to fulfill requirements.
Think of implementers. Think of customers in order to check that they
understand what they are going to get delivered. Do not wait until a system
is complete before ensuring that the customer and supplier share a
common understanding. Think of the authors. Will they recognise what
they have written after a few people have “improved” their work?

4.3 Requirements Development and Requirements
Engineering

Requirements engineering and requirements development are used
interchangeably. According to CMMI the purpose of requirements
development is to “produce and analyze customer, product, and product-
component requirements”.

We have already discussed that the word Analyse (or Analyze) and have
stated that it can have many meanings. CMMI use this term to mean more
than just checking the quality of requirements. In this case CMMI use
Analyse also to mean “understand”.

CMMI requirements development consists of the following activities:
Elicitation, analysis, validation, and communication of customer needs,
expectations, and constraints to obtain customer requirements that

56 4 Introduction to Requirements Engineering

constitute an understanding of what will satisfy stakeholders; Collection
and coordination of stakeholder needs, development of the life-cycle
requirements of the product, establishment of the customer requirements,
and establishment of initial product and product-component requirements
consistent with customer requirements.

When using a CMMI model, you will encounter goals and practices that
include the phrase “establish and maintain.” This phrase connotes a
meaning beyond the component terms; it includes documentation and
usage. For example, “Establish and maintain an organizational policy for
planning and performing the organizational process focus process” means
that not only must a policy be formulated, but it also must be documented
and it must be used throughout the organization. It is not enough to define
a process, you have to live it!

AcceptanceCustomer Requirements
Analyse

Elicit

Review Specify

Modelling

Product Requirements

System Design Requirements

Integration &
System Test

Integration &
Subsystem Test

Analyse

Elicit

Review Specify

Modelling

Analyse

Elicit

Review Specify

Modelling

Analyse

Elicit

Review Specify

Modelling

Analyse

Elicit

Review Specify

Modelling

Component Requirements

Design Requirements

Implementation

?

?

?

?

Analyse

Elicit

Review Specify

Modelling

?

Requirements Development = Requirements Definition

Understanding Requirements

Figure 4.11: Requirements development within information model

So requirements development consists of requirements definition, from
customer requirements through product requirements to product
component requirements. Whereas we have said that the requirements
definition process is used at all levels of the information model for all

 4.4 Summary 57

types of requirements, requirements development is specifically pulling all
levels together and making connections between them.

The word product is used to be synonymous with system. The word
component is used to be synonymous with sub-system.

Requirements development and requirements definition are very similar.
The difference is that requirements development emphasises the holistic
view of the use of requirements. Requirements Definition also has this
view but does not emphasize it. When we teach the definition of
requirements it is unfortunately very easy for people to concentrate on the
current requirement or the current document at the expense of seeing the
big picture. Of course everything that is written about requirements
definition, such as lists of quality criteria, is to be considered as part of
something bigger. Requirements do not exist in isolation. Showing
requirements development to be the totality of defining requirements from
customer requirements through to implementation helps to emphasize the
systems view necessary.

4.4 Summary

This chapter gives an introduction to requirements engineering. At first we
show how the terms commonly used in this area have changed throughout
the decades.

Thus it is important to note for example that what has been called
customer requirements in the 1970’s has later been called user
requirements, still later stakeholder requirements and today again customer
requirements. In the following we use these different terms
interchangeably, indicating that it does not so much matter which word
you use as long as you have a common understanding.

The later sections of this chapter give an overview of the HOOD view
upon the requirements engineering process. We believe that it can be
divided int o two main steps and their corresponding activities:

Definition of scope:

• Identifying interfaces
• Defining interfaces
• Defining stakeholders and roles

Definition of requirements:

• Elicitation
• Specification

58 4 Introduction to Requirements Engineering

• Analysis
• Review

It is also explained how modelling is the one activity that supports all
other activities, and as such does not belong to one or some activities
exclusively.

The last sections of this chapter explain why the requirements
engineering process is iterative, and how the individual activities fit into a
corresponding requirements information model. It can be seen that the
activities are carried out again and again, thus shaping the requirements
with respect to quality on each level of the information model and with
respect to greater detail from one level of the information model to the
next.

5 Introduction to Requirements Management

The previous chapter has given an introduction to requirements
engineering or, in other words, requirements development. The meaning of
requirements development has been shown briefly, and the benefits of
structured requirements development processes have been explained in
detail.

The present chapter will go into more detail regarding the lifecycle of a
requirement and the interfaces of requirements development to adjacent
systems engineering disciplines. It will be shown that this lifecycle
analysis quickly gives rise to a number of questions.

The following chapters will answer all these questions in detail,
analysing each interface separately and explaining the information that
should ideally flow through each interface.

5.1 What is Requirements Management

Requirements management is the sum of all activities in connection with
requirements that take place after the requirements have been developed or
engineered.

For example, if changes of requirements are desired, these changes must
somehow be coped with. This usually implies an analysis of what the
change means to the project in terms of effort, budget, resources and so on.
Another example where requirements must be managed is quality. If the
quality of the requirements is not regularly analysed it will quickly
deteriorate, leading to requirements that have little meaning.

In short, requirements management are all activities that are necessary
to bring or keep the value of the requirements on a high level after the
requirements have first been elicited and documented.

5.2 Why we need Requirements Management

As has been briefly mentioned above, requirements management is
necessary to ensure a high level of quality and value of the existing

60 5 Introduction to Requirements Management

requirements throughout a project. But what does this actually mean? To
give an impression of how complex the further management of existing
requirements can become, consider only four requirements as follows.

1. the press must produce 400 car doors per hour
2. the press must have an emergency switch
3. the emergency switch must stop the press within 10 milliseconds
4. the press must have a pressing force of 50,000 kg

The above requirements are assumed to be quite representative for a
press producing car doors. Once they have been specified or in other
words, written down, they exist and are known to the relevant people.
When the requirements are approved by the stakeholders the requirements
engineering process or phase is finished.

We point out again to the fact that ideally, there is no evaluation of the
requirements during the requirements engineering phase. The exclusive
goal of requirements engineering is to somehow formulate the visions that
are inside the heads of the stakeholders, using any language that may
appear suitable. Telling whether a requirement is too expensive or not, or
whether it makes sense or not, should be left to later phases. Let us now
have a closer look at what could happen to these requirements after they
have been engineered.

Obviously, in the light of what has been said just now, a first thing that
would be very sensible to do is checking whether the requirements can be
realised at all. This phase is often called the feasibility study. For example,
such an analysis may reveal that it is physically impossible that the press
works with a force of 50,000 kg while producing 400 doors per hour.

If the feasibility analysis is not part of the requirements development
processes, then what it is a part of? Are the testers responsible for making
sure that all approved requirements are testable (and thus realisable)? Does
project management have to ensure that only realisable requirements are
further processed? Or is realisability the domain of risk management? It is
seen from these questions that once the requirements are processed any
further, they start to touch upon other systems engineering disciplines.

A second thing that could happen after the above requirements have
been specified is that a stakeholder wants to change a requirement. For
example, it may turn out that in order for the press to be economic, it must
produce 500 car doors per hour, rather than 400.

Now what should happen to this change request? Maybe the new
requirement is impossible to realise due to laws of physics or a limited
project budget. Should the requirement therefore be just neglected? Should
we not at least document somewhere that there had been such a change
request, even if it was rejected because the requirement is impossible to
realise?

 5.2 Why we need Requirements Management 61

If we do not document this change request independent of whether it has
been implemented or not, then maybe later another stakeholder or even the
same proposes the same change request again. We then have to evaluate
the requirement again, because we have forgotten that this has already
been done before. But this case is still relatively simple, and the thing
becomes more complex if the requirement is not simply impossible to
realise.

If it is feasible then we must decide whether we implement it or not.
Which criteria will our decisions be based on? Do we do it because we
have enough resources and budget to implement the change request? Do
we just like the customer and therefore do what he wants us to do? Were
the criteria that govern our decisions documented and agreed on
beforehand?

Let us assume that we could somehow answer all these questions and
decide to go for the implementation. This will make the change affair still
more complex: how do we document the change to the requirements? Do
we just delete the old requirement and replace it with the new one? If so,
how can we tell whether there has ever been another set of requirements?
But why should it be desirable to be able to tell if there have been other
requirements before?

Do we document the reasons for our decision? If not, how can we tell
later why we implemented or rejected the change request? What could
happen if we are not able to reproduce the reasons for our decisions?

If we keep the old versions of the requirements and the new versions,
how can we distinguish between old and new? What are the advantages of
being able to tell an old version of a requirement from a newer one in the
first place?

Let us further assume that we somehow arrived at the conclusion that
the change request is possible and should be implemented. However, say
the laws of physics do not allow for the press to produce 500 car doors per
hour and to be stopped within 10 milliseconds at the same time. With 400
car doors per hour, this was still possible and so there were no problems.
Have we documented that there is a relationship between the working
speed of the press and the time it takes to stop it in a case of emergency?
Did we realise at all that this relationship exists? If yes, how did we realise
it and why did we not document it? If no, could it have been possible to
know?

If we did not think about these things before implementing the change
request, we will afterwards find out that although the change has been
successfully realised, one of the other requirements is not met any longer.
If this other requirement is a killer requirement (mandetory), then all the
work in connection with the change was for nothing and we have to get

62 5 Introduction to Requirements Management

back to the old state, which will usually take still more work and time, or
simply money.

A third scenario that is probably known to most of our readers are
limited resources including limited budgets. Assume that the current
project situation allows for the implementation of only three out of the four
requirements as listed above. How did we find out that the budget will not
suffice to implement all the requirements in the first place? When did we
find this out? Was there a chance that we could have found out any earlier?
What is the advantage of realising that we will not be able to implement all
the requirements as early as possible? Do we have to inform anyone about
the fact that the requirements will not be implemented completely? Who
would that be? Do we know that it makes sense to keep on working on the
project if not all requirements will be implemented? If we do, how and
why do we know? If we do not, should we not try to find out? How could
we possibly do this?

This is just a small sample of questions that typically arise in similar
situations. Assuming that somehow we know that we will go ahead with
the project, which will be the one requirement we are not going to
implement? Are there any criteria for our decision? Are these criteria
documented somewhere? Are there good reasons why there should be any
criteria at all and why these criteria should be documented beforehand?

In such a situation, do we ask other people which requirement they think
should be neglected? Who are these people and is there anything special
about them? Why would we ask them and not just anyone?

Obviously, it would be sensible to leave out the one requirement that is
least important. But what does this mean? Who defines importance? Based
on which criteria is importance defined? Are these criteria reproducible?
Are they documented? Are they known at all? Is it necessary that there are
known, documented and reproducible criteria? What could possibly
happen if this was not so?

A fourth thing that usually happens to requirements after they have been
implemented is that the product or parts of it are tested against the
requirements. This gives rise to more questions.

How can we test whether a requirement is met? What do we need in
order to carry out this test? When should we carry out the test? When do
we have to plan for the tests in order to keep the project on schedule? Who
will carry out the tests? How much of the project budget and resources will
it take to carry out the tests? Is there enough budget to test all
requirements? If not, which requirements should be tested and why?

Will we document the test results? Will we also document the test
procedure? Will we document which test belongs to which requirement? If
we do not document these things, how can we be sure that we have carried

 5.2 Why we need Requirements Management 63

out all necessary tests? How can we be sure that the product passes all
tests? How can we be sure that we applied the correct tests?

If we document this data, where and how will we do this? If we
document the relationships between the requirements and the tests and if
there are changes to the requirements, how do we know if these
relationships are still correct? How do we get the information that there
have been changes to the requirements at all? Is it necessary to inform the
testers if there are changes to the requirements they should test against?

Since usually every project tries to consume as few resources as
possible to carry out each activity, it would be interesting to know whether
there is any potential in testing for saving money. It may be possible for
example that one test case can test more than just one requirement. It may
even be possible to test the whole product with only a small number of
sophisticated tests. How could we find out whether it is possible to create
such test cases? If we somehow get to know that it is possible, how can we
determine how the tests must look like in order to be so effective? Can we
carry out the tests at any time after implementation, or are there any other
preliminaries? If so, how do we know?

Let us assume that the above questions could either somehow be
answered or were irrelevant, then by now we have a set of approved
stakeholder requirements that are implemented and tested against.
However, what do we do if one or more of the tests fail? Does this mean
that the product cannot be accepted? How do we know which requirements
must be met for acceptance and which are less important?

Did we realise the risks associated with unsuccessful tests? Have we
documented these once they were known? During the project, have we
come across other risks? Have we taken them into account or have we
ignored them, hoping that the others will also ignore them? Was every
project member and stakeholder aware of the risks?

In view of the risks, was there a decision to stop the project or to go
ahead with it? If yes, what were the criteria for our decision and who
decided? If not, why not?

If all relevant people have been aware of the project risks, have we
thought of possible countermeasures? Have we assessed the possible
impact of every risk? If no, why? If yes, which criteria have we used for
the assessment? Who carried out this assessment? Who decided who
should carry out the assessment? Why? When has this decision been made
and how?

It can be seen from what has been said so far that going a little bit
further into detail of what happens to requirements once they are specified
immediately gives rise to quite a remarkable series of questions. In our
experience, the following systems engineering disciplines have the most
important interfaces to requirements engineering or development:

64 5 Introduction to Requirements Management

• project management
• quality management
• configuration management
• risk management
• test management
• version management
• change management

The above list does not claim to be complete. Depending on which
different systems engineering disciplines we define it can be shorter or
longer.

However, the following chapters will show that if the above disciplines
and their interfaces to requirements engineering or requirements
development are taken into account the corresponding requirements
management processes will have a very high level of quality and will thus
ensure that the requirements will also have a very high level of quality and
value during a project. The following figure 5.1 is a graphical
representation of what has been said so far. In the figure, the dark grey part
of the circle enclosing all interfaces are the interfaces to requirements
development and thus represent requirements management.

Change
Management

Version
Management

Test
Management

Requirements
Development

Configuration
Management

Risk
Management

Quality
Management

Project
Management

Figure 5.1: Systems engineering interfaces to requirements development

 5.3 The benefits of a working Requirements Management 65

Although we have shown Quality management to be separate for the
purposes of the above diagramme, in everything else we write we assert
that each discipline includes the need to be correct and to achieve the
necessary quality criteria and standards, that is that each systems
engineering discipline includes quality management.

5.3 The benefits of a working Requirements
Management

The implicit assumption that underlies all efforts in connection with the
improvement of processes such as requirements development,
requirements management, risk management, test management, project
management and so on is that the quality of the processes is reflected in
the quality of the work products or artefacts of these processes.

In other words, there is no substantial reason for having high quality
processes other than the belief that high process quality will make for
reproducibly high product quality. That the quality of the processes does
indeed have a direct influence on whatever is created by the application of
them has been shown in many different ways and is commonly accepted. If
this was not so it would be hard to believe that so much money is spent for
example in the automotive industry just to reach a certain level of maturity
or capability within one of the process maturity models that are
momentarily a quasi-standard.

Traditionally, the aeronautics and space industry has always played a
crucial part in making such ideas known to the public. There are two
reasons for this is: huge amounts of money involved and the danger of
people being killed or injured.

The first reason, huge amounts of money involved, is usually more
associated with the space industry, although the development of a new
type of aircraft may also take one billion $ or more. For example, a new
research satellite can easily cost one billion $, and there is usually little
interest on part of all parties involved that the project fails. And whatever
light a philosophical discourse may shed on the various aspects of this, it is
usually true that people are more likely to make a second and third check
and double check and carry out quality ensuring activities when talking
about the potential loss of one billion $ instead of talking about the
potential loss of one thousand $.

Of course, the corresponding project budgets will be very different, too.
But having ten times more money to spend on quality assuring activities
does not automatically mean that the quality will be ten times higher. And
activities carried out with only one tenth of some other project’s budget

66 5 Introduction to Requirements Management

may create better results when carried out with heart and personal interest
than when carried out with ten times more effort but without any further
involvement.

The second reason for the leading role of the aeronautics and space
industry in introducing new concepts of working, danger of people being
killed, is mainly associated with the aeronautics industry. Although people
can also be killed in space, the job of an astronaut is normally looked upon
as being always somewhat dangerous, and due to nowadays space
transport capacities the potential number of people getting injured or killed
is very low.

An aircraft accident on the other hand frequently involves what some
analysts call a "total loss", which means nothing but the death of all people
on board, including the total damage of the aircraft. Apart from the project
budgets, there too is a psychological aspect to this. People are normally
more interested in making sure that what they have done will work under
all circumstances when the health and lives of people are at stake.

And it seems as though the concepts of high quality processes and
standardised ways of working have proven to be true. As is repeatedly
pointed out to by advocates of aviation, travelling by air is much safer than
travelling by car (at least with regard to the person mileage).

Requirements development and requirements management are two
pieces of the puzzle of process areas for a modern product developing
industry. While requirements development assures that what is to be
developed is indeed what the customer wants, requirements management
integrates the data created during requirements development into the
overall project flow.

It has been shown in the previous section that if the requirements
development information is not integrated with the other available project
information, many questions will arise and remain unanswered after the
requirements have once been specified. The result is that their quality will
quickly lessen until they have no meaning. Keeping on working with such
obsolete data may be more risky than starting from scratch or working.

Thus there are a number of benefits to a working requirements
management. First, requirements management tries to make sure that the
product under development is actually what the customer has in mind
throughout the whole course of the project.

This must not be mistaken to be rather trivial. In fact, there are probably
only a few projects where the initial visions of what should be invented are
even approximately identical to the ideas that are formulated towards the
end. The reason for this is that the ideas usually grow with the experience
of the development cycles. What seemed to be a good idea at the
beginning turns out to be irrelevant, and what seemed to be easily
realisable at first turns out to be impossible to implement. And what has

 5.3 The benefits of a working Requirements Management 67

been missed at the start turns later out to be most crucial to the whole
project.

Second, requirements management supports making the product to be
developed manageable in terms of its lifecycle including later
modifications. This means that by the way the information once available
on requirements is administered, a maximum amount of continuity and
usability is ensured. There are organisations for example that are quite
successful with one time projects, but who could not repeat their own
successes a number of times in a row. There are also projects that end
successfully, but no modifications whatsoever to what has been developed
can ever be carried out because everything has been engineered just to fit
once and for ever.

A typical example that many readers familiar with the development of
software will already have encountered themselves is “just the one
additional blue ‘Repeat’ button in the menu bar”. Changes upon changes,
however small they have been, have slowly rendered the code completely
unreadable and unmaintainable, for only little information has been
documented in the code and associated documents. The customer shouted
whenever he had a new idea and the developer responsible for the user
interface implemented it on the spot, for it was always “just a few lines of
code”. This game goes on and on (and it does so all the time and in many
projects), until finally the most trivial change like “green button instead of
blue button” is just the one straw that breaks the camel’s back.

With a working requirements management, all associated information
remains useful and valuable for a very long time. If everything has always
been properly documented, projects that have been closed even years ago
can quickly be revived and up and running within little time and with little
effort. We see evidence of this again and again. The documentation costs
very little if done at the time, but is worth so very much for enabling
changes to be made quickly and safely,

A third aspect closely related to the second benefit is reusability.
Reusability means that whatever information and data are created during a
project can be used by other projects. To be useful to others, information
has to be prepared and documented in a certain way, and requirements
management ensures that this is so. So once again, the documentation costs
very little if done at the time of the change, but is worth so very much for
enabling following projects and also for maintenance.

Reusability is one of the key means excessively applied nowadays
especially by some industries such as automotive in order to stay alive in
the never ending struggle to market products with higher quality for a
lower price in a shorter amount of time. Still however, reusability
manifests itself quite often in the experience of the developers only. A
developer that has developed only rear view mirrors throughout the last

68 5 Introduction to Requirements Management

twenty years approximately knows what he has to do when a new car
product line is developed, and as long as the developer is with the
company, no problems usually arise.

But once the developer changes to another department or changes his
employer altogether, new colleagues have to start from scratch and make
their own experiences, until they too are specialists and later also leave.
Requirements management demands that relevant information be
documented and safely stored away so that all people involved can retrieve
this information whenever necessary. Thus requirements management tries
to document the knowledge of the various people and to make it public
within an organisation.

A fourth benefit of a functioning requirements management is legal
safety for both the customer and the supplier. Apart from formal basics of
contracts such as dates of delivery, project budget and resources and the
like, the requirements are usually the only means to check whether what
has been wanted by the customer is what has been actually delivered. It is
quite amazing to note how many projects are still based upon informal
personal talks, for example phone calls between the developers of the
customer and the developers of the supplier. We have nothing against
discussions between customers and suppliers, indeed we spend much of
our time facilitating this, but you must document the results of the
discussion. If a change is agreed it takes little to note who has agreed to
what change and why. One does not have to wait long to see the benefit of
this practice. Try this and find how often people have a different
recollection of what was agreed. Sometimes even at the end of a meeting a
summary of the meeting helps flush out how different people have
concluded different things from the same discussion. The written
documentation helps to create a common understanding of the (changing)
requirements.

Requirements management means safety for the customer because he
can always get a clear picture of what is about to be developed, how this
will be done, how much this will probably cost, how long it will
presumably take, which people will implement his ideas, which risks there
are and so on.

For the supplier, requirements management means safety because he can
always give a clear picture of what he is intending to do and what he is
intending not to do, why this is so and how he is going to do what he is
going to do. The supplier can justify and explain the basis for vital
decisions and he is sure that all relevant project information can be looked
up by the customer whenever there appears to be a need to do so.

There are many cases where towards the end of an unsuccessful project
or a project with an unsatisfactory outcome the customer accuses the
supplier of not having made clear what he is going to do and how he is

 5.3 The benefits of a working Requirements Management 69

going to do this. A common answer of the supplier is that the customer has
not made clear throughout the project what he really wants and needs and
left the supplier to find out for himself. With requirements management,
such arguments arise with fewer consequences because the discussions
happen earlier. The aim is to achieve a common understanding of the
requirements before too much time and money has been invested, and if
possible without aurguments and recriminations. Requirements
management really means sharing information and trying to reach a
common understanding.

The benefits listed so far are mainly based on a common principle that is
as trivial as difficult to meet: it is the principle of having a proper
communication and a common understanding between all people involved.
We want to point out to the fact here that “all people involved” usually
also includes the future customers or users of a system to be developed.

Thus in short, requirements management tries to make sure that
everybody has all the background knowledge they need and that
information is flowing properly between all parties involved. Although it is
clear that only an optimum communication can produce optimum results,
many organisations are still for example far from having their staff
communicate with each other properly. Note that in this respect,
communication means everything from a simple phone talk to a user
manual with a few hundred pages.

Consequently, optimum communication gives rise to further benefits.
For example, it is clear that the amount of time for development cycles can
be significantly reduced due to a reduced number of misunderstandings
and thus reduced rework and everything associated with this.

This aspect is very important and goes hand in hand with what has been
said further above in connection with reusability. Shorter development
cycles basically mean quicker time to market, which in turn means
potentially more success with the product. At the same time, shorter
development cycles mean that more products can be developed within the
same amount of time, and so an additional factor for the success of an
organisation can be that more different products can be offered as
compared to competitors.

Another success factor is the proper communication with the
stakeholders, including the future users or customers or buyers. Thus
products based on a well-functioning requirements management do
generally match the ideas and visions of the customers much more exactly
than products developed secretly, assuming that whatever the developers
invent is just exactly what the customers are looking for. So generally the
acceptance will be higher if a product is developed with proper
requirements management processes.

70 5 Introduction to Requirements Management

Besides more marketing success, shorter development cycles will
usually also make for reduced costs. This alone can increase an
organisation’s net win, in addition to all the other benefits and aspects
mentioned here. Costs are also reduced because people that have so far not
been considered important during the development process are asked their
needs and ideas, thus reducing the likelihood of requirements being
missed. We are under no false apprehension here that getting the balance
right is not easy. Simple checklists can help here to retain organisation
specific knowledge about what is a successful balance. Keep the checklists
and improve them over time.

For example, production, sales and the logistics departments may have
most important requirements regarding some special or any new product.
For productions it may be desirable to use only certain materials that are
currently in stock, or it would save a lot of time and money if the housings
of new products were designed according to some simple principles
because this would allow for existing machine tools to be used again and
again. Probably every reader could easily think of hundreds of more
examples of such typical requirements which without a proper
requirements management are usually not documented and thus just
forgotten.

Known requirements also allow for a proper testing of the results of the
development cycles. If it is not clear what functionality should be
contained in a new product it is impossible to tell whether the product
meets the original intentions or whether it does not.

The possibility to carry out good tests together with all other benefits
makes for a higher overall product quality. But higher quality is also
closely related to market success and thus net win of an organisation, and
it is seen how all the positive aspects of a functioning requirements
management amplify each other and open up new potentials.

Another important aspect for a better overall product and project quality
are reduced risks. A more advanced requirements management process
usually demands that there be an identification of possible risks and the
definition of potential countermeasures. Even to simply write down
possible risks is a significant improvement over not doing any risk
management at all. Thinking of the possible impacts of each risk and how
they could be handled creates even more awareness and will make sure
that if something goes wrong, it does not do so suddenly and unexpectedly,
but people are prepared and know how to react in order to get the best
result under the given circumstances.

With this we close this (far from being complete!) example list of
advantages of having a functioning requirements management. It may
suffice to make clear that the efforts that are necessary to introduce a
requirements management culture within an organisation will pay always

 5.4 Why some people are against Requirements Management 71

pay off sooner or later, and our experience is that it does so sooner rather
than later.

5.4 Why some people are against Requirements
Management

Although we believe that there must be a sound requirements management
if an organisation wants to produce high quality goods, some people are
against the introduction of improvements to requirements managements.
There are many reasons for this.

Generally, requirements management demands that the various project
or systems engineering activities are transparent, at least to a certain
degree. This is also implied by the graphical representation in figure 5.1
above. Transparency however may be regarded with apprehension by
underconfident people that will take the risk that their mistakes will be
built into a product perhaps causing massive costs later, rather than
possibilities for improvement be discovered and improved before costs
become enormous.

Let us consider a typical engineering company and the way the staff
operate. We will usually be able to find senior management including the
board and so on and project managers. For the sake of this example let us
assume that there are no change managers, and no version and
configuration managers nor requirements managers, but we may be able to
find quality managers, risk managers and test managers.

Quite frequently we find, the role and responsibilities of each person are
niether well-defined nor clear. Many of our readers will be familiar with
the question: “What the heck does our project manager do?” I am sure that
you project managers reading this may have heard something similar!

Requirements management means that all project members work hand
in hand in order to ensure the highest possible quality and value of the
requirements information. This implies that it is not possible for a project
manager to just shut the door of his office and let all others do their work.
Project management has to provide and coordinate vital information and
data to all others, otherwise the idea behind requirements management will
not work.

Therefore, a first reason why some people are against the introduction of
requirements management is the fact that they would have to share at least
some of their data and information with others. In some cultures, sharing
their knowledge and information is identical to sharing power and
influence, and this is unfortunately not desireable in some peoples’ eyes.

72 5 Introduction to Requirements Management

We have worked for one client where information was hidden to such an
extent that not only the project was unsuccessful, but the company was
unsuccessful. To explain what happened we will have to disguise the the
facts and use a different industry. In our example let us consider an aircraft
manufacturer with various teams. The team responsible for the wings
refused to share information with the team responsible for thrust (engines
to you and me), and the team responsible for thrust refused to share
information with the wings team. No-one would share information until
they were sure that there own task was complete and error free. The
engines were to be mounted on the wings. Not even the interface was
agreed. Of course the tasks could not be complete without data from each
other so the tasks were never complete.

But there is more to sharing data and information. Even staff that are on
a relatively low level of the organisation’s hierarchy might try to avoid
sharing their data and information, and on such lower levels the reason is
quite often not a question of power and influence. Rather, sharing their
data really means that they have to publish the results of their work. This
in turn is identical to publishing the quality of their work, and some
underconfident people prefer to hide. This is a shame because it means that
no-one can see their good work, and the complements that boost
confidence are then not forthcoming.

Another reason why people may not be willing to support the
introduction of requirements management is that such an introduction goes
hand in hand with changes within the organisation. For example, if proper
requirements management and associated processes are introduced this
usually means that people have to develop a new way of working. And this
is quite logical, for if no one had to change their ways of working, this
would mean that everything is already as it should be and there would be
no reason to change anything.

Change however is generally threatening to people. There is more to
changes than just the fact that some or all staff have to change their ways
of working. For example, it is possible that the hitherto ways of working
with their disadvantages and inconsistencies produced some so-called
company heroes whose heroism is solely based on the knowledge about
how to best get around the various traps. If these ways of working are all
done away with and replaced with better processes, the heroes would loose
their status for their knowledge has no value any longer.

A similar situation occurs when improved processes make the work of
some people redundant. One probably well-known and typical example for
this is the introduction of personal computers and word processing
software, which has dramatically changed the jobs for classical typists
working previously on a typewriter.

 5.5 How resistance can be avoided 73

Another aspect of change is insecurity caused by fear of change. Even
the people who do not have to fear the loss of a hero status or the loss of
their job may feel insecure when things change. For example, the planned
changes may make it necessary that people use new computer
programmes. This could imply that the knowledge they gathered so far
about the hitherto software has no meaning any longer. Maybe the new
programme is more complex to handle, maybe the new programme
demands that more time is spent in front of the screen and so on.

Usually, changes also inevitably mean an increase of the number of
mistakes during the initial phase. If the organisation’s spirit is such that a
mistake is seen as a personal failure rather than the chance for everyone to
improve, then people have a very understandable reason why they would
rather not change.

Thus, the readiness for changes demands a certain maturity of the
organisation and its members. Change requires support and commitment
from management at all levels.

5.5 How resistance can be avoided

From what has been said so far it is clear that in order to overcome the
resistance against change, peoples’ needs must be identified, taken
seriously and addressed.

The HOOD group’s philosophy has therefore always been to put the
people in the centre of everything. For example, whenever new processes
are necessary, the future users and other relevant people should be asked
their opinion and viewpoint. In our experience however, many times this is
not the case.

People need to be involved in all planned changes right from the very
beginning, not just the ones who will be directly affected by it. Many
organisations still believe that if someone high enough up in hierarchy
commands anything, everyone will follow suit. This may be true with
respect to a certain number of various subjects, but for all we know it has
never worked with regard to requirements management so far.

When applied properly, requirements management is a philosophy and a
way of thinking rather than just a way of working. This means that all
people involved must be able to understand the basic concepts and ideas.
Thus, training and coaching should always be an essential part of the
introduction of requirements management in an organisation.

Experience shows that it is normally not possible to tackle requirements
engineering and management with a big bang approach, trying to get from
0 to 100 within no time. Rather, requirements management has to be

74 5 Introduction to Requirements Management

introduced little by little and there are a number of advantages to such a
step by step approach.

First, a step-by-step approach with pilot projects leaves space for
constant improvements. Whatever process or method or tool is devised, it
can be tested in real life quickly and within the boundaries of one or a
small number of projects. Thus the quality of the processes and associated
methods and tools is as high as possible before they are introduced to all
relevant departments and teams within the organisation. This in turn
assures that acceptance regarding the usability and usefulness of the new
concepts is high from the very beginning.

Second, a step-by-step approach makes it easier to control the progress
of the requirements engineering and management introduction. The people
responsible for the success of the introduction will use, amongst others,
metrics to track the progress of their work. These metrics will produce
results whose reliability corresponds with how narrow the focus on what
they should measure is. Thus if many new subjects are introduced at the
same time they will most probably influence each other and relate to each
other, which makes it hard to measure one subject independent of all the
others. By contrast, if new aspects are introduced one at a time it is easy to
watch how one new bit changes or influences what is already there. Once
it is clear that some new piece of the puzzle has been introduced
successfully to fit with all other existing pieces, the next piece can be
introduced and so on.

Third, the one-at-a-time philosophy exploits some human psychological
traits. Everyone is familiar with the fact that some problem or task that
first appears insurmountable presents itself in quite a different light when it
is split up into smaller fragments that can be assessed and understood more
easily. In much the same way the introduction of requirements engineering
and management concepts is very much easier when the whole thing is cut
into small and manageable goals that can be reached one after the other. It
will be very motivating for the people involved to see the progress of their
work by continuously reaching smaller or larger milestones.

People can also be motivated by the example other people give. Thus, a
proven way to lessen resistance and to facilitate changes is the concept of
key users or key people. Ideally, a key user is a person that is willing and
able to support the planned change and that is also respected amongst his
colleagues.

The key people are usually very limited in number and get special
support, training and coaching by specialists. This way, the key people
soon become specialists themselves and carry the knowledge and
enthusiasm into the various departments and working groups. Key people
are usually very important stakeholders because they really know what is
going on and how it feels like to apply the new methods and tools.

 5.5 How resistance can be avoided 75

The key people will usually be amongst the first within an organisation
that use the new processes including methods and tools. Therefore it is
good to have a forum for all key people to be able to share their
experiences with each other and with external specialists that accompany
the introduction of requirements engineering and management.

Such a forum is the requirements engineering and management
competence centre. The competence centre provides sound and central
support for projects that start with requirements engineering and
management. Typically, the competence centre informs new projects,
trains and coaches new users and supports in tailoring the requirements
engineering and management processes, methods and tools to the specific
demands of each individual proect.

At the beginning, the competence centre is usually staffed with external
specialists and internal key people. In the further course of the introduction
it should be a central goal that the external specialists and consultants
withdraw little by litte, and that the responsibility is correspondingly
handed over to internal staff. When this is done properly, the requirements
engineering and management philosophy will keep on living and the
organisation will be able to drive the further improvements without
external help. Only when this stage is reached will the introduction have
been successful.

It is our experience that without such a competence centre nobody
usually feels responsible for driving the changes, except for external
consultants. When they leave the organisation the efforts can come to rest
and will finally be for nothing. Besides this, a competence centre will
make sure that all experience and knowledge regarding requirements
engineering and management are collected and stored in one central place.
Thus, compared to approaches without a central institution, chances are
less that all this information soon gets lost because there is no one to keep
all the small pieces together and produce one big and consistent picture.

While a competence centre will mainly focus on technical aspects, the
corresponding strategic counterpart is the requirements engineering and
management steering committee. The steering committee plays a critical
role in creating awareness and acceptance for the planned changes.

The steering committee has to look out for possible obstacles,
psychological barriers and the like. It should be closely linked to the senior
management of the organisation that wants to introduce requirements
engineering and management. This is usually reached by members of the
senior management being members of the steering committee, too. The
committee should come together often to discuss the progress of the
introduction, problems and possible solutions. Whenever problems appear,
senior management should start countermeasures to secure and improve
the acceptance of all people involved. This of course makes it necessary

76 5 Introduction to Requirements Management

that the senior management are themselves convinced of the advantages
and necessity of the intended changes.

Another means to motivate people and to lessen the resistance is the
foundation of a requirements management and engineering academy. The
intention of such an academy is not only to facilitate workshops and
training, but to find out what the people need to learn in order to be
successful in the new environment and to support the people in learning
these things. In this sense the education process is focussed on learning
rather than teaching, which makes sure that the responsibility remains with
the individual. A typical collection of training offered by a requirements
management and engineering academy may appear as follows:

• requirements engineering and management for senior management
• requirements engineering and management for managers
• requirements engineering and management method
• writing requirements
• requirements management tool for requirements managers
• requirements management tool for users
• workshop information modelling

The training listed above could be given by external consultants and
specialists at the beginning, whereas at later stages they could be given by
internal staff, for example selected key people. This has the advantage that
training and coaching is absolutely fitted to the organisation, but in
practice has the disadvantage that the best internal staff are normally very
busy and project pressures on the key people can seem to be more urgent
than supporting training.

5.6 After the introduction of Requirement Management

Some organisations believe that the introduction of requirements
management and engineering is a project with a beginning and a sudden
end. One common belief is that once the processes are established and
working, business can get back to usual, only with some new ways of
working.

Experience however shows that this is not so. Requirements engineering
and management can produce many self-amplifying effects, but there must
always be clear responsibilities and goals. Requirements engineering and
management is like a huge engine: an almost insurmountable inertia at the
beginning, and a large inertia to stop once it is running. Nevertheless, even
the best engine will finally come to a rest without constant fuel supply.

 5.7 Summary 77

One must not think that once changes are introduced, people have
forgotten all there was before. There is always the temptation to fall back
into old habits, even after a considerable amount of time has passed since
the introduction of a new philosophy.

It sometimes appears as though requirements management and
engineering conforms to modern theories of economics. It is almost
impossible to remain at a certain stage of maturity or capability for a long
period of time. If you do only a little bit too little, things will quickly
deteriorate. If you do what is normally necessary to do it properly, you can
usually not avoid to get better and better.

There is a remarkable number of organisations that have no clear vision
of what they let themsleves in for when they are calling for requirements
management and engineering. They are prepared to dedicate a certain
amount of time and money – but please, not too much! – to some half-
hearted introduction project and after that just sit back and wait for the
announced wonders to come.

Without a long term commitment to embrace the improvement the
advantages will be short-lived at best. It is clear from what has been said in
the previous sections that there are so many aspects to the introduction of
requirements management and engineering processes that it is impossible
to address them properly without commitment. The real spirit of
requirements management and engineering is a continuous improvement
process, without a clear end. This means that an organisation must be
willing to accept these boundary conditions if they want to be successful.
Although it is almost certain that all efforts in terms of money will pay off
realtively soon, a lot of organisations fear the initial investments and at the
beginning cannot clearly see the way. All we can do is remind them of a
statement made by the famous Thomas Alva Edison: “Most of life’s
failures are people who did not realise how close they were to success
when they gave up.”

5.7 Summary

The present chapter gives an introduction to requirements management and
engineering . It is shown that it does not suffice to document requirements
once and then leave them as they are, for a set of requirements does not
usually remain stable, but go through changes.

Examples are given to illustrate how even a small number of
requirements can give rise to a large number of challenges once people
really start to work with them. It can be seen how all the various systems
engineering disciplines such as risk management, change management,
version and configuration management, test management, quality

78 5 Introduction to Requirements Management

management and project management all have interfaces to requirements
engineering, and the sum of all these interfaces to requirements
engineering may be called requirements management.

One section lists the benefits that are associated with a functioning
requirements management and engineering philosophy. Some of the main
benefits for every organisation are quicker time to market, increased net
profit and cashflow, products of higher quality, reduced risks, longer
product lifecycle and better maintainability and reusability.

It is explained how in spite of all the benefits usually associated with
requirements engineering and management processes, some people may
appear to be against the introduction of corresponding processes, methods
and tools.

Two of the main reasons are fear of change in general and fear of
becoming transparent in terms of quality of one’s own work. As
requirements management and engineering , when applied properly, is a
way of thinking, changes to an organisation’s culture are noramlly
inevitable, and people fear that it may be impossible for them to be
successful in the new environment.

Therefore, a lot of effort must be dedicated to overcoming barriers and
lessen resistance of the people that are affected by the introduction of the
planned changes. A number of concepts are outlined in order to motivate
people and make a project to introduce requirements management and
engineering successful.

Some of these concepts are the building up of key people, the
foundation of a requirements management and engineering academy to
provide support and facilitate learning, the introduction of a requirements
management and engineering steering committee to keep senior
management involved and informed, and the creation of a competence
centre to facilitate continuous improvement.

Finally it is shown that a living requirements management and
engineering philosophy needs constant drive and must not be assumed to
keep on living on its own. Introducing corresponding processes usually
means to always have certain resources dedicated explicitly and solely to
the further development and improvement of the existing processes. These
resources may be releasing people from normal project work from time to
time, having a group specifically dedicated to process improvement, or as
simple as having a time of reflection and improvement at the end of each
project. Once an organisation starts to neglect these needs, existing and
working requirements management and engineering processes might come
to a standstill after a relatively short amount of time.

6 Project Management interface

Even today projects that do not meet their initially planned time schedule
and / or budget are quite common. Thus, for the relevant fields of industry
it is one of the primary goals to improve the quality and predictability of
their projects.

A functioning requirements management can support the project
management, providing valuable data to assess the project status at any
time. The creation of or access to such data relies on the existence of links
between the requirements and between the requirements and other
information. This chapter will show you how you can use requirements
management and traceability to create relevant project management data.

6.1 What is Project Management

There are many good books about project management (for example,
[Hindel2004]). Here, we will not try and give yet another definition of
what project management is and is not. Rather, we try to identify the core
activities that are commonly acknowledged as belonging to project
management that can be supported by requirements management. In our
eyes, these are:

• writing of proposals
• definition of project scope
• estimating resources and costs
• project planning and scheduling (milestones)
• project monitoring
• quality management
• reporting
• managing people

According to various other authors, activities such as risk and change
management are part of project management, too. It is more accurate to
say that risk and change management share interfaces to project
management. Risk and change management can also be supported by
requirements management, and as we cover these topics in detail in other

80 6 Project Management interface

chapters we will not take them into account here. By the end of this book
you will probably share our opinion that all systems engineering
disciplines share interfaces to all other systems engineering disciplines.

6.2 How Requirements Management can support
the writing of proposals

As was shown in the previous chapters, a functioning requirements
management will not only link say, user requirements to system
requirements and system requirements to design requirements. A fully
grown requirements management will also link requirements to work
packages, to resources and budgets, to milestones and deliverables. With
these links, even in such early stages as proposal writing, requirements
management can support the project management.

There are basically two cases of boundary conditions for new
development projects:

• there have been similar projects before
• there have not been similar projects before

In the first case, which we believe covers more than 95% of all
development projects, information, data and knowledge from the
predecessor project can be used to support the early activities.

When writing a proposal you basically make an initial estimate of the
resources and budgets needed to successfully carry through the project. If
there has been a similar project with a functioning requirements
management, you will probably be able to identify user requirements of
the old project that are similar to the known or anticipated user
requirements of the current project. Using links that were drawn in
predecessor projects between the user requirements, the system
requirements, the design, the implementation, the project plan and the
resources and budget in the old project, you will be able to quickly
associate expenditures and costs with these user requirements, see figure
6.1. This will give you security when initially estimating the budgets for
the current project.

 6.2 How Requirements Management can support the writing of proposals 81

User Req.

UR-
701

There must be
a stop button.

SR-
18

ID Ref.Text

UR-
513

There must be
a run bu

SR

System Req.

SR-
18

There must be
stop buttons
on each side.

CR-701
DR-59

ID Ref.Text

SR- There m

Design Req.

DR-
59

Three buttons
conforming to
ECE 192 must
be install

SR-18

ID Ref.Text

Project Plan 2007

May July June AugustApril Project Resources 2007

May July JuneApril

Colin

Bob

Franky-
Boy

P1 80%
P3 40%

P2 100%

Holiday

Holiday

P4 50%
P5 50%

P2 100%

P2 100%

P1 70%
P3 20% P3 100%

...

...

...

Project Budget 2007

Title Planned Actual

Work Package 1 12,000 4,000

Work Package 2 53,000 34,000

Rest

8,000

19,000

...

Links

Figure 6.1: Example of linked project information

If it is not easily possible to find comparable key user requirements or if
relationships (links) between user requirements and costs cannot be
identified, you can still create a rough initial estimate by computing an
average cost per requirement, which is very similar to the method
described in section 6.5. To do so, divide the known final overall budget
by all known user requirements of a similar predecessor project. You may
want to do this for more than one similar predecessor project, thus giving
an even better average of costs per user requirement.

This procedure should give you a very good idea of how much the
implementation of one typical user requirement in your organisation will
cost. Together with your initial estimate of how many user requirements
there may be, you can thus arrive at an initial estimate of the overall
project costs, see figure 6.2.

User Req.

UR-
701

There must be
a stop button.

SR-
18

ID Ref.Text

UR-
513

There must be
a run bu

SR

Project Budget

Planned

Actual

342,000

365,000

Nr. of User Req.Average Cost per User Req. =

117

Example:

Averag Cost =

= 3120 €

Total Project Budget

365,000

Figure 6.2: Calculation of average cost per user requirement

82 6 Project Management interface

In our experience this works well if the person making the estimate has
a lot of experience in the implementation of projects. Some differences
that may seem minor to the untrained eye might make a major difference
to the risks and costs of a project.

Of course, if the whole project is comparable and similar to predecessor
projects, then you can simply take the known overall budgets of these
similar projects as a starting point.

If the projects are similar but your estimate differs significantly, you
should carefully try to find the reasons. Note however that when you are
able to reuse a significant amount of work from similar projects, you could
arrive at an initial estimate that is much lower than the cost of these earlier
projects. In fact, if you have a project of similar level of complexity and
can reuse a lot of earlier work, you should ask questions if your estimate
does not show savings.

If for some reason you can identifiy similar user requirements but have
no relationships (links) between requirements and costs and also cannot
compute a usable average cost per typical user requirement, then still the
user requirements of the predecessor projects will at least give you a good
overview of what to think of when making an estimate for the project at
hand, thus helping you not to forget some of the key aspects. In this case
user requirements from similar projects may serve as a check list, see
figure 6.3.

User Req.

UR-
701

There must be
a stop button.

SR-
18

ID Ref.Text

UR-
513

There must be
a run bu

SR

Similar Project Current Project

Check List
Plan for emergency stop facility

Plan for a user interface

Figure 6.3: Using user requirements from similar projects as check list

If there was no similar project before, or if you feel that although there
were similar projects their key user requirements differ too much from the
current key user requirements, you may still be able make an estimate
based on comparison of complexity. To do so, try to identify user
requirements of former projects that were of a similar level of complexity
as the user requirements of the current project. This identification of user
requirements of similar level of complexity may be supported by
developers and former project staff. Once similar key requirements are
spotted, the former resources and budgets associated with these
requirements can be used as a starting point or a best initial estimate for
writing the proposal.

6.3 How Requirements Management can support the definition of the project 83

6.3 How Requirements Management can support
the definition of the project scope

Writing the proposal also goes hand in hand with the definition of the
project scope. You can make a sensible proposal only if the project scope
is known at least roughly. For example, imagine that you should write a
proposal for a robotic system. Surely it will change your estimates
significantly if you knew whether you should only produce the robot, or
the robot together with the power supply, or the robot and the power
supply and the electronics and software controlling the robot.

Defining the project scope can be interpreted as defining the boundaries
for requirements: only requirements that lie within the project scope
(including project interfaces) are taken into account. If the project scope is
not clear in the beginning, you will use various elicitation techniques with
your customer to arrive at an agreed status. You will also elicit a number
of initial user requirements. In fact, defining the scope is equal to the
definition of initial user requirements with various levels of constraints and
freedom to choose a solution, and various levels of detail. As a starting
point you may also analyse the scope of a similar predecessor project, if
there was any. Investigating competing systems is also a good start.

It is commonly known that throughout the course of a normal
development project there is often a shift of scope compared to the beginning.
Apart from new user requirements that may explicitly extend or change the
scope of a project, this is especially true for requirements that only touch
upon the boundary of the scope and are therefore harder to spot. If the
requirements and thus the project scope are well documented from the
beginning, it is always possible to tell which requirements were in the scope
from the beginning and which requirements extended or changed the scope.

A documented change of scope may lead to re-negotiations between the
project partners, as there could be additional expenditures or costs
associated with the changed project scope. If the requirements or the
project scope, respectively, are not so well documented, it is impossible to
tell whether there is a need for re-negotiations or not. In such situations the
supplier often overshoots his budget or time schedule, for he accepts and
implements requirements that little by little change the scope but are not
spotted as scope-changing.

When there are changes in scope a functioning requirements
management will be able at any time to tell whether the system and design
requirements still fit the user requirements and the scope, or whether these
too have to be modified to match the changes. Without the links between
the various kinds of requirements it may happen that developers at the
design and implementation level are going on to plan a product that is no

84 6 Project Management interface

longer what the customer expects, or plan a product which is even more
sophisticated than expected by the customer who might then not be willing
to pay for such “extras” that were not ordered.

6.4 How Requirements Management can support
estimating resources and costs

Estimating resources and costs is closely related to writing a proposal. For
a proposal you make an initial estimate of resources and costs, as was
mentioned before. However, as the project progresses and requirements are
more and more developed and refined, the resources and costs needed to
complete the project will be repeatedly estimated and also refined. This is
one of the main activities of project management and is also related to
project monitoring.

With an established requirements management it is always possible to
use the links between the requirements and the work packages as identified
in the project plan to relate resources and costs to requirements. This is
visualised in figure 6.1 above.

The information is vital when it becomes clear that the resources and /
or budget will not suffice to implement all of the requirements. In this
situation decisions must be made regarding which requirements to keep
and which requirements to hold for a possible later release, to waive, or
reject. If the requirements are documented with an attribute for
importance, the information of resources and budgets associated with each
requirement or cluster of requirements can be used to identify those
requirements that are of low importance but need a relatively great amount
of resources and / or budget. Such requirements will be perfect candidates
for waiving. However, such decisions should also be confirmed by the
stakeholders, or otherwise it might for example turn out that a requirement
that was prioritised low and thus waived was most important to some
future users of the system who were not asked and who cannot make
sensible use of the system without that requirement implemented.

We have experienced this in an organisation that created systems based
on a platform electronics that provided resources to the internal customers
to use to fulfil customer requirements. In order for the central platform
group to meet its time and cost budgets the group decided unilaterally to
not implement some the features of the platform. The platform group was
judged to be successful but the other groups that relied on the platform
were judged as unsuccessful because their software could not fulfil the
customer requirements. The costs that resulted for the whole organisation
due to lack of taking other stakeholder needs into account were enormous.

6.5 How Requirements Management can support project planning (scheduling) 85

A similar situation occurs when the initial estimates and projections are
constantly refined in the course of the project, revealing at some point in
time that some requirements need much more resources and / or budget
than were initially planned. Again, using other pieces of information such
as the importance, the project management can, together with the
stakeholders, decide whether they want to go on implementing those
requirements or whether the requirements shall be waived.

If there are no up to date links between the requirements and the project
plan with its work packages, resources and budget planning, decision as
sketched above are much harder to make due to the lack of vital
information. As can be seen from the scenarios described, the same is true
if the requirements are not up to date: if the importance attribute for
example is not properly filled in and the budget and resources will not
suffice to implement all requirements, then, based only on the information
on implementation costs, project management might unfortunately waive
requirements which are most important to the system that is developed.

6.5 How Requirements Management can support
project planning (scheduling)

The planning and scheduling of projects is closely related to the estimation
of resources and costs, and both these activities will be greatly supported
by a living requirements management.

Project planning usually involves an overview of available resources
and the assignment of these resources to work packages. The work
packages in turn stem from a work breakdown that partitions the major
activities into manageable pieces.

In order to plan a project, information is needed that can be derived
from the requirements. In fact, as the requirements really represent the
system to be developed, they are the only source of this kind of
information. If requirements management does not make these data
extracted from the requirements available to project management, there is
no basis to make plans.

A project plan typically includes a series of milestones and deliverables;
see the following figure 6.4.

Milestones can be interpreted as end points of one development activity.
If there is a defined development process, milestones may also represent
end points of certain process activities. Usually, a certain result is
associated with each milestone, and such a result may serve as inputs for
the following activities associated with the next milestone. For example, a

86 6 Project Management interface

typical result of a milestone “user requirements analysis and review
complete” is a set of agreed and confirmed user requirements.

Project Plan 2007

May July June AugustApril

Milestone

Deliverable

Figure 6.4: Example project plan with milestones and deliverables

Traceability is especially valuable when planning the dependencies of
various results or activities within a project. Thus using the links between
the requirements it is possible to tell which requirements must be
implemented and which associated activities must be finished before the
implementation of other requirements and the carrying out of associated
activities can begin, see figure 6.5. This may save the project management
from making plans that cannot be carried out in reality due to an incorrect
sequence of activities.

User Req.

UR-
701

There must be
a stop button.

SR-
18

ID Ref.Text

UR-
513

There must be
a run bu

SR

System Req.

SR-
18

There must be
stop buttons
on each side.

CR-701
DR-59

ID Ref.Text

SR- There m

Design Req.

DR-
59

Three buttons
conforming to
ECE 192 must
be install

SR-18

ID Ref.Text

Project Plan 2007

May July June AugustApril

Construction
of frame
Construction
of housing

Develop
mechanics

Develop
software

Order of implementation + test

Frame
Housing
Mech.
Softw.

Package Design Requirements

... ...

519, 112, 34, 7, 275, 96

3, 174, 187, 191, 205
24, 17, 83, 129, 143, 166
59, 45, 103, 62, 157, 116, 139

Figure 6.5: Traceability used to plan correct order of implementation

Deliverables are results that are delivered to a customer, either an
internal or an external customer. Although deliverables can be delivered at
any time within the project plan, they are usually associated with a

6.5 How Requirements Management can support project planning (scheduling) 87

milestone. A typical milestone including a deliverable could be “first
prototype running”.

To define the milestones, information on the work to be done is needed.
From the point of view of implementation, the identification of different
work packages gets easy, as each requirement or cluster of requirements
can represent one work package. The detail of these work packages can be
more and more refined as necessary, using traceability to step down the
various levels of abstraction of requirements. For example, in practice a
project manager will not plan the implementation of each single design
requirement, but may define each customer requirement to be one large
work package or cluster the customer requirements so as to give say, 10
main work packages. A more detailed planning can then be made by the
developers responsible for each of these work packages. Here we use the
terms user and customer to mean the same. Both terms are used to group
together many stakeholders such as end user, Maintenance, Sales, and
Production. We use customer to emphasise the difference in roles between
customer and supplier, each of which may have stakeholders responsible
for activities such as maintenance, sales, and production.

Apart from implementation, associated activities have to be carried out.
Thus the requirements must be analysed (quality checked), reviewed,
confirmed, refined, tested, integrated and so on, and all these activities
must be planned and must be assigned resources and budget. With the
estimates about the complexity of the requirement as provided by
requirements management, it is possible to plan these associated activities
and allow for a suitable amount of time.

Having defined all work packages and milestones, project management
must allocate resources to work packages and estimate the time needed to
complete each work package. A functioning requirements management can
support this task as the overall work load can be analysed in more and
more detail, going through the various levels of abstraction of the
requirements as mentioned before.

For example, on the implementation level each single requirement
typically may need a similar amount of time to implement, say 1 day. If
the requirements differ significantly, an average time to implement can be
calculated. The calculation can be made for the current project, using
estimates of specialists and developers. However, it may be much more
effective to take the data of previous projects and calculate an average time
to implement one single requirement on the implementation level over a
number of projects. This can be done for example by adding the total time
needed to carry out all relevant projects and dividing the result by the sum
of all requirements of these projects on the implementation level. Note that
in this case the average time needed to implement each single requirement
already includes the time needed to carry out all related activities, such as

88 6 Project Management interface

review and analysis, tests, implementation and so on. If the average time
needed to really only implement one requirement shall be computed, then
only all the time spent in all projects for implementation alone must be
added and divided by the number of requirements. Valuable information
can be extracted if this calculation is done for example to get the average
time to test a single requirement, to review and analyse a single
requirement.

These calculations or estimations can be carried out on each level of
detail of requirements, but it may prove difficult to compare the level of
detail of requirements. Experienced developers may provide valuable
support.

By using the average time to implement a single requirement on the
lowest level of detail it is possible to step back up the hierarchy of
abstraction and estimate or calculate the time needed to implement for
example each customer requirement. Based on this estimate and the
resources allocated to each of these requirements or work packages, an
estimate can be made regarding the time to finish each work package. This
information can be finally used to create a project schedule.

6.6 How Requirements Management can support
project monitoring

Project monitoring in general is the production of data or information
about the current status of a project. As such, project monitoring may be
seen as the heart of project management.

Managers need information in order to carry out their tasks. If the
necessary information is either not available, incomplete or generally not
reliable, the decisions will in turn be only as good as the quality of the
input information. Thus managers will see to it that they have enough data
at hand at any point in time. On the other hand, not every piece of
information is valuable and necessary. It is thus one of the first challenges
for a project manager to define the key data that shall represent or indicate
the status of a concrete project.

The following list gives examples of typical key figures or data that may
be tracked as indicators for the status of a project:

• budget used compared to budget available
• work packages or milestones finished and still open
• resources available compared to resources planned
• critical time path
• ...

 6.6 How Requirements Management can support project monitoring 89

These and more are usually used by management to get an overview of
a running project. But project monitoring is not just about getting a current
overview. Constant monitoring will reveal how current figures diverge
from initial estimates, for example initial estimates on time and resources
needed to complete the various milestones. Such initial estimates are
normally inevitably incorrect, and as the project goes on and incorrect
estimates are revealed, the project planning and scheduling should also
constantly be reviewed and corrected according to what data is available.
This may lead to later project activities being reorganised so as to take less
time or to consume less resources. A simple sketch of a project
management process can be seen in the following figure 6.6.

Initial Estimate
of Expenditures

Initial Definition
of Project Metrics

Identify Abnormal
Metrics Readings

Modify Definition
of Project Metrics
and / or Estimates

Monitoring of
Project Metrics

Definition of
Countermeasures

Check Effectiveness
of Countermeasures

Figure 6.6: Simple project management process

Now, how can a functioning requirements management support project
monitoring? We already know that the requirements represent the system
to be developed. As each requirement will usually have, amongst others,
an attribute indicating the status of implementation, a requirements
management can quickly produce an overview of the implementation
status of the project on each level of detail. This is depicted in the
following figure 6.7.

Knowing the implementation status of the requirements is identical to
knowing the status of the various work packages or milestones. If the
project planning and scheduling has been set up using the data that
requirements management can provide as described in the previous
section, the requirements or work packages are also associated with budget
and resources. Thus the implementation status of the requirements on a

90 6 Project Management interface

suited level of abstraction will also indicate the budget and resources
consumption.

System ReportUser
Requirements

ID Text Status
UR-
22

UR-
3

UR-
102

UR-
57

SR-

The "Go" button colour
must be (RGB) 0,255,0.

The "Pause" button colour
must be (RGF) 255,25

The "Info" button colour
must be (RGB) 0,0,255.

The "Stop" button colour
must be (RGB) 2000,0,0.

The "Test"

ok

ok

System ok: 97%
Still to do: 3%

Subsystem ReportSystem
Requirements

ID Text Status
SR-
107

SR-
73

SR-
39

SR-
12

SR-

The "Go" button colour
must be (RGB) 0,255,0.

The "Pause" button colour
must be (RGF) 255,25

The "Info" button colour
must be (RGB) 0,0,255.

The "Stop" button colour
must be (RGB) 2000,0,0.

The "Test"

ok

ok

Subsystem ok: 92%
Still to do: 8%

Functions ReportDesign
Requirements

ID Text Status
DR-
17

DR-
51

DR-
43

DR-
203

DR-

The "Go" button colour
must be (RGB) 0,255,0.

The "Pause" button colour
must be (RGF) 255,25

The "Info" button colour
must be (RGB) 0,0,255.

The "Stop" button colour
must be (RGB) 2000,0,0.

The "Test"

ok

ok

Functions ok: 82%
Still to do: 18%

Implementation ReportImplementation
Requirements

ID Text Status
IR-
71

IR-
15

IR-
174

IR-
86

IR-

The "Go" button colour
must be (RGB) 0,255,0.

The "Pause" button colour
must be (RGF) 255,25

The "Info" button colour
must be (RGB) 0,0,255.

The "Stop" button colour
must be (RGB) 2000,0,0.

The "Test"

ok

ok

Implemented: 69%
Still to do: 31%

Figure 6.7: Using the implementation status to create reports

Project monitoring is usually closely related to metrics, a topic that is
dealt with in detail in another chapter. The key figures that are chosen at
the beginning of a project for tracking the project status are computed in
regular intervals, and this is identical to producing metrics. Based on these
metrics or key figures, the project management will spot deviations of
actual from planned figures and will then make correcting decisions.

6.7 How Requirements Management can support
quality management

Product quality is usually directly related to business success and customer
satisfaction. Therefore, economically oriented organisations usually have,
amongst others, the objective of providing a high level of product quality.
It has been shown that a consistently high level of product quality can be
achieved by installing a high level of process quality. Quality management

 6.7 How Requirements Management can support quality management 91

tries to establish processes with standardised methods, tools and templates,
and to constantly improve these processes, based on feedback from the
various projects.

Ideally, quality management should be independent of and separated
from project management. This ensures that quality aspects may not easily
be compromised by project management boundary conditions such as
budget or time schedule. However, since many organisations leave quality
management to the project management, we cover this topic here.

Quality management covers a number of activities. These activities may
be collected into two categories:

• quality framework
• quality monitoring

The quality framework is the collection of tools to support and to outline
the quality management of an organisation. These tools usually include
procedures, process descriptions, best practices and so on. In other words,
the quality framework is the collection of all available standards and must
be tailored for each individual project.

The development of such a framework usually takes a relatively large
amount of time and is rather complex. Therefore, various suggestions have
been made to provide a starting point. Maybe the best known such effort is
the international ISO9000. This is a collection of basic standards that can
be tailored to fit a wide range of organisations, for example developing and
manufacturing companies.

One of the standards contained within the ISO9000 is the ISO9001,
which provides an abstract quality process model. It is the task of any
organisation to tailor this generic model to its needs and special boundary
conditions.

The outcome of such a tailoring will be a quality management
framework or manual defining all quality management processes of an
organisation. It is known that in some countries there exist organisations
that will certify that the process or processes as described in a quality
management manual conforms to the ISO9001. Such certificates are highly
valued and are demanded by some OEMs of their suppliers.

Although an organisation’s quality management manual is tailored to
the organisation’s needs and special situation, it is usually still rather
abstract and generic. For all projects it outlines the processes to be
followed, the standards to be applied and the tools and methods to be used.
Therefore another tailoring is usually necessary to make the basic quality
management manual or framework fit the special needs and boundary
conditions of any current project.

In this course of tailoring the quality manual to fit a current project, the
person or persons responsible for the quality management of the project

92 6 Project Management interface

select the appropriate processes, procedures and tools and adapt these to
their current needs. Also, it will be defined what sort of quality shall be
achieved in the current project and how the quality may be assessed. For
example, in a project to develop a new car braking system a high product
quality may be defined as an extraordinary high level of reliability. In a
database application development, high quality could mean optimised
efficiency.

As these different characteristics can normally not be optimised all at
the same time, it is mandatory to set the quality goals at the beginning of a
project. This makes sure that the various developers know the points to
focus their efforts onto and do not aim at opposing goals.

However, quality goals without means of checking if they are met are
nearly useless. Therefore, together with the quality goals the key figures to
check the quality have to be defined. This touches upon the topic of
metrics that is dealt with in detail in another chapter. Getting back to the
examples above, the reliability of a braking system may be measured as
the number of failures during a given number of test runs. The quality goal
then may be to have less than one failure in 1,000 test runs. The efficiency
of the aforementioned database application may be measured as the time
elapsing to process a certain number of database queries. In this case, the
quality goal may be that the total elapsed time be less than or equal to 2
seconds for 100,000 queries.

Quality monitoring means checking whether the processes and standards
tailored to fit a project are properly applied, and whether they are effective
and helpful. In this respect quality monitoring is closely related to project
monitoring. In fact, if the responsibility for quality management lies with
the project management, quality monitoring is part of project monitoring.

Quality monitoring is more than just watching the figures chosen as
quality indicators at the beginning of the project until they reach the target
value. Quality monitoring will need repeated quality reviews and
assessments to guarantee that the standards are still being followed and
properly applied, and also to ensure that processes are helpful. The
following figure 6.8 shows a simple example of a quality management
process for projects.

Quality reviews shall contain all those aspects that were tailored using
the organisation’s quality manual for a project. This may mean that all
internal documentation that is created in the course of the project is
checked that they conform to the selected standards, that all external
documentation applies the tailored templates, that for example software
code is produced following the agreed coding guidelines, that system tests
are performed according to a defined process and so on.

 6.7 How Requirements Management can support quality management 93

Tailoring of Quality
Management Manual

Definition of Quality
Goals and Metrics

Identify Deviations
from Target

Monitoring of
Quality Metrics

Definition of
Countermeasures

Check Effectiveness
of Countermeasures

Figure 6.8: Simple quality management process for projects

The result of these reviews is a current project status with regard to the
reviewed aspects of the project quality, and this can be part of project
reports. In practise however, such information is often not created or not
available, but it is strongly recommended to gather such information and
make it accessible. The results can and should also be handed over to the
people responsible for the respective aspects of quality so that they may
improve their work. For example, the quality of the testing process as
assessed in a review will usually be passed back to the project test manager
and testers.

Requirements management is perfectly suited for supporting quality
management. Two different aspects of requirements management can be
identified in connection with quality management:

• requirements management for a project
• requirements management for quality management

What does this mean? The first aspect, requirements management for a
project, means that all the quality requirements can properly be addressed
in any project with a functioning requirements management.

For example, that certain templates must be used for any documentation
that will go to the customer can be formulated in the requirements. There
may be an extra section in the requirements document for quality aspects,
and all of the requirements in this section may represent the organisation’s
quality manual as tailored to the project.

If the quality requirements are formulated, links can be drawn, for
example, to the various documents created in the course of the project.
This will give traceability and will thus help quality monitoring. For
example, if a document meant to be sent to the customer has no links or
references to the relevant quality requirements, this may mean that it does
not meet these requirements yet, and must be improved before it can be
delivered or published. One example is shown in the following figure 6.9.

94 6 Project Management interface

Quality Req.

QR-
1

All project re-
ports must use
template PR-7.

PR-1
PR-3

ID Ref.Text

SR- There m

References =
Links

Project Report #1

This report summarises
all project activities that
were carried out b

Author: Franky-Boy
Date: Friday 13th, 2007

Project Report #2

This report summarises
all project activities that
were carried out b

Author: Colin "Robin" H.
Date: February 31st, 2007

Project Report #3

This report summarises
all project activities that
were carried out b

Author: Mickey Mouse
Date: March 2nd, 2007

Figure 6.9: Example of using quality requirements and links to documents

Thus the quality goals can directly be incorporated into the product
development process. Requirements management can make quality
requirements of similar and predecessor projects available and can
therefore offer a starting point for formulating the quality requirements of
following projects.

The second aspect, requirements management for quality management,
deals with an organisation’s quality management as such. We have said
before that quality management should be a dedicated process within an
organisation and should therefore have dedicated resources. Ideally, there
exists a quality management team that is independent from individual
projects. We have also said that the development of organisation-wide
quality procedures and standards is normally quite complex and can take a
lot of time.

In this sense, quality management itself can be seen as one single task
that goes on infinitely and that can be broken into individual projects so
that progress may better be monitored. Like every other activity, quality
management should be managed with requirements, too. This means that
quality management projects should start with eliciting requirements from
various stakeholders, for example the members of the board, the heads of
the departments, developers, customers, and so on. All further actions that
are taken to develop a standardised quality management process must then
address these requirements.

If these requirements are kept up to date and if links are drawn between
the various requirements and all related information, the advantages of
requirements management can be fully utilised. Thus for example if a
template shall be modified, it is easy to tell which other documents,
procedures and process descriptions must also be modified. Changes to the
quality management process can be assessed in terms of complexity, risk,
time to implement, and costs.

 6.8 How Requirements Management can support reporting 95

The most detailed requirements that are created in such a way may
finally represent the organisation’s quality management manual and may
therefore serve as the starting point for tailoring for the individual projects.
So, the more abstract quality requirements of the organisation and the
more detailed quality requirements of the projects can all be cross-linked.
This allows for constant improvement of both the organisation’s quality
management and the projects’ quality management. Also, this provides a
sound foundation for any future projects to start with quality requirements.

6.8 How Requirements Management can support
reporting

Project monitoring and reporting may be seen as almost identical. Project
monitoring creates data that are used as the foundation for project
management decisions. Reporting is the activity of compressing these data
to a suitable level of abstraction and documenting this extract in a way
suited for presentation.

Although a report may contain more information than can be produced
with requirements – for example the number of project members that are
currently ill or on holidays – most of the more important information in a
report can be created using requirements management.

A report will usually include some or all of the following topics:

• budget consumption
• resources consumption
• project planning and scheduling
• milestones
• deliverables
• decisions that must be made by project management
• risks

This chapter together with other chapters of this book show how all of
the necessary information may be created using requirements management.
Project monitoring is closely related to metrics, and that topic is dealt with
in detail in chapter 8.

96 6 Project Management interface

6.9 How Requirements Management can support
managing people

It is commonly accepted that the attitude of the people working on a
project is one or the key factors for success. Thus the management of the
people working on a project is mostly about motivation.

People are motivated if they are taken seriously, if they are respected
and if they have a level of responsibility that corresponds with their skills.
Maslow invented his theory of human needs that are arranged
hierarchically ([Masl1954]). According to this theory, basic needs such as
food and accommodation must be addressed first before more advanced
needs such as social needs or esteem needs become important. Maslow’s
pyramid of human needs in depicted in figure 6.10.

fundamental
physiological needs

safety, prosperity

social affiliation

social recognition

self-realisation

Figure 6.10: Maslow’s pyramid of human needs

As it can be deemed that people working on development projects in a
civilised country of western European standard do not usually suffer from
hunger, thirst or deprivation of sleep, it is the more advanced needs that
must be satisfied to make such people happy. Therefore, motivation of
project members will aim at satisfying the social needs, esteem needs and
self-realisation needs.

There are a number of ways to try and address the various needs of the
people working on a project. Obviously the first means to resort to is what
is usually called common sense. Common sense tells you not to insult
people, to show them that they are valued and so on. However, this may
not cover all open and secret needs of all project members and
requirements management may help to elicit more such needs.

A project manager could have his own list of requirements or needs of
his project staff. These requirements could be overtly elicited, for example

 6.9 How Requirements Management can support managing people 97

by direct asking. They may also be covertly elicited, by trying to capture
the atmosphere in a project and by informally talking to staff.

Another way to take peoples’ needs into account is by explicitly
eliciting related requirements at the beginning of a project. Depending on
what kind of system is to be developed, it may be necessary that certain
specialists need to work closely together, since otherwise too much
deadwood is created by inefficient communications. This circumstance
may mean that there should be an office large enough for all the specialists
to work together in one place. If it is obvious that there are numerous
experiments or simulations necessary in the course of the development,
this may indicate that there is a need for a properly equipped laboratory. If
some specialists are part of the project whose task is to invent new
algorithms, for example for software optimisation or a control unit, this
probably means that they need some quiet place for themselves where they
can read related books and try out some ideas without being disturbed.
When the system to be developed needs testing, this means that there must
be a dedicated test space with corresponding tools to properly carry out the
tests.

Thus it is seen that the more obvious and the less obvious needs of
people can be realised by eliciting such requirements and by analysing the
technical requirements in view of their implicit demands on the working
environment, equipment and so on.

Such an approach can help ensure that regarding the working
environment, project members are happy and motivated. Another key
factor for happiness of project members is the progress of the project itself.
Being able to see some idea growing from scratch to a fully working
system is surely a powerful driver for staff. Here too, requirements
management may help in a number of ways.

First, requirements management is able to give the current status of a
project in terms of percentage of implementation, status of use of budget
and so on. This was explained further above in connection with project
planning and scheduling and project monitoring. Thus, project members
always have an up to date overview of where the project is at the moment.
With this, motivation of staff is increased, since everyone is able to follow
the progress. This is in contrast to other ways of developing systems,
where very little information is known or communicated, and where every
project member only knows about his next task without being able to see
the whole picture. Sadly, this kind of project management is still very
common. As a side effect of requirements management being able to give
a detailed status of the project, staff can adapt their next steps so as to be
most efficient for the further progress of the project. This may be true for
example if it turns out that some requirements are more risky or complex
to implement than initially thought – in such a case the specialists may

98 6 Project Management interface

concentrate their efforts on the high-priority requirements, rather than
wasting time implementing some nice-to-have functionality.

Second, the results of a functioning requirements management may be
motivating in their own right. It was mentioned before that a living
requirements management will usually increase the quality of the product.
This is accomplished by raising the quality of all activities associated with
the requirements. It is thus possible that project staff are highly motivated
by one or more of the following:

• fewer requirements forgotten
• fewer implementation loops
• fewer problems with the project schedule
• fewer problems with forgotten equipment (for tests, …)
• less time to finish the project (compared to similar predecessor projects)
• fewer misunderstandings
• less unnecessary double work
• …

If these results motivate project members, they are sure to support and
enhance requirements management in following projects. This will ideally
lead to a self-driven, endless improvement cycle, and this really is what
requirements management and engineering is all about.

6.10 Summary

This chapter deals with the interface between requirements management
and project management. In particular, it is shown how requirements
management can support the following activities: writing of proposals,
definition of project scope, estimating resources and costs, project
planning and scheduling (milestones), project monitoring, quality
management, reporting, and managing people.

Other activities that can also be defined as belonging to project
management are covered in detail in other chapters of this book and are
therefore not taken into account here. These are change management,
configuration and version management, risk management and so on.

For all of the above mentioned activities requirements management
provides valuable information. The activities are very much simplified
because all the requirements data and all associated information is made
accessible and traceable by requirements management. Information links
between the various pieces of related information stemming from the
different systems engineering disciplines, such as requirements
development, change management, project management, quality

 6.10 Summary 99

management and so on, make sure that all relevant information in
connection with a requirement is complete and can be collected by simply
following the links. As ideally, the information links build a chain or a net,
all information can be gathered from any point within the chain or net. For
example, if the requirements are linked to the risks and to the project
management plan, the dependencies between the project planning and
scheduling and the risks can easily be extracted and visualised.

In principle, project management is a constant process that lasts from
the first vision of some system to be developed until the system is finally
disposed of. Project management is iterative by nature, and the various
process steps or activities must be repeatedly carried out. Starting with
initial estimations, for example for the project scheduling and planning,
these estimations are constantly refined as more and more information and
data emerge and become available.

Monitoring and analysing all available data, the core task of project
management is to realise when decisions become necessary and to make
these decisions. For example, in the typical situation of small project
budgets and few resources, project management must prioritise the
activities to maximise the chance for project success. The better the
information on which such analyses and decisions are based, the higher
therefore the quality of the decisions and thus of the whole project.

7 Configuration Management interface

Many experts in the field of system engineering have made their collective
knowledge of development processes available to the public in the form of
standards and guidelines. Configuration management is identified as an
important element of the development process; configuration management
controls the elements of the development process.

Applied correctly, configuration management can be highly useful in
product development. Some standards are applicable to specific product
types and lmost all contain safety aspects, as some product types are
safety-critical. Examples include medical products that need to be
developed according to FDA regulations, or products in aviation. An
extensive list of standards and guidelines containing configuration
management information can be found in [Hass2003].

Common and well-known process assessment and quality assurance
methods like CMMI (SEI) and SPiCE require configuration management
in addition to requirements management to achieve a specific maturity
level in the development process.

In the pharmaceutical industry, “Good Automated Manufacturing
Practices” (GAMP) were developed as a guideline that provides a
foundation of methods for product development in this field. For
companies that require firm control of their development process in
pharmaceuticals, GAMP is invaluable.

Besides several other process areas, GAMP defines CM as one
component for successful product development. This raises the question:
are requirements management and configuration management independent
from each other, or are they closely linked? To answer this, we will look at
some typical questions from the RM&E field:

1. How can configurations of requirements and relations be managed?

2. How can traceability be achieved, from customer requirements to
system requirements, design models, component requirements all the
way to implementation, realization and test specification?

3. How can configurations be managed that contain realization products

in addition to requirements, test, and design specifications?

102 7 Configuration Management interface

4. How can a release of specifications be managed that is valid, up to
date, and consistent?

5. How can change requests be tracked, starting from their cause, over

their effects on the specifications, and all the way to implementation
and testing?

6. How can a change approval process be established, that is used as

basis for decision-making for systematic assessment of change-
related estimates?

7. How can tracking of the project’s progress in the areas of effectively

implementing requirements and executing change requests be
achieved?

Can all these questions be answered in the RM&E context alone,
without using configuration management? The following chapter will
discuss the correlation between RM&E and configuration management to
answer this question.

7.1 Of versions, configurations, and releases

Numerous standards attempt to define the terminology of configuration
management [Hass2003]. However, in practice there is a lot of confusion
due to different or overlapping interpretations of terms. In the following,
we will create a foundation for the discussion by defining the most
common terms in the area of configuration management. The selected
terms and definitions were taken from the configuration management
literature and represent the most commonly used terms. The selected
definitions are as generic and abstract as possible, to make sure that they
are free from any specific technical domain. In addition, the definitions
will be defined in an order that provides a maximum of continuity and
consistency. Figure 7.1 shows the different Configuration management
definitions.

Configuration Unit: A configuration unit is the smallest possible
building block of a configuration that can be considered “atomic”
[Glin2005]. Examples include documents, specifications, source code,
executable code, make files, compiler, design and test documentation.
Sometimes, these configuration units are also referred to as artifacts.

Version: A version is a defined and reproducible state of a configuration
unit at a specific point in time. Every version has a unique identifier to
ensure that configurations can be recreated correctly. A collection of

 7.1 Of versions, configurations, and releases 103

multiple configuration units is sometimes also called a version, for
example to define a functioning computer program. This can lead to
confusions.

Baseline

Change
History

Release

Configuration
Item

WorkArea

Version

Configuration

Variant

Traceability

Merge

Figure 7.1: Configuration management definitions

History: The sequence of versions in time is called version history. The
version history documents how the configuration unit changed over time.
Another term for this documentation of all changes is “change history” or
“traceability of the change history”. Note the use of the important RM&E-
term “traceability“. Traceability is defined elsewhere in this book.

Version management: version management refers to a system that tracks
all versions of a configuration unit (in other words, the version history). A
configuration unit can have multiple states (versions). The various versions
of a configuration unit are derived from each other. Changes on an existing
version are saved as a new version, together with a unique identifier,
timestamp, user identification and possibly other metadata.

Configuration: A configuration is a set of configuration units. By
creating a set of configuration units, each identified by a version, a
controlled configuration is formed.
The following figure 7.2 will clarify the interplay of configuration units,
versions and configurations.

A configuration consists of a number of configuration units. Each
configuration unit may have a number of states (versions). Each change on
a configuration unit is saved as a new version, the version management
takes care of this. The following representation shows one specific
configuration (configuration 1), consisting of well-defined versions of
configuration unit.

104 7 Configuration Management interface

Configurations
C1
C2
C3

Configuration
Units

– CU 1
– CU 2
– CU 3
– CU 4
– CU 5

Versions
0.1 0.2 0.3 0.4

Figure 7.2: Versions and Configurations

Configuration 1:
 Configuration unit 1, version 0.1
 Configuration unit 2, version 0.2
 Configuration unit 3, version 0.2
 Configuration unit 4, version 0.1
 Configuration unit 5, version 0.1
Later on, some configuration units were changed. Configuration 2

contains unchanged artifacts from Configuration 1 and other artifacts that
are different from Configuration 1. This is exemplified in the following
(CU refers to configuration unit, C refers to configuration):

Configuration 2:
 Configuration unit 1, version 0.2 (contains changes to CU 1)
 Configuration unit 2, version 0.2
 Configuration unit 3, version 0.2
 Configuration unit 4, version 0.3 (contains changes to CU 4)
 Configuration unit 5, version 0.2 (contains changes to CU 5)
Likewise, configuration 3 may contain unchanged artifacts from

configuration 2 and changes to configuration 2.
This is one way to represent the connection between configuration units

and configurations. But there are other representations and work processes,
depending on work style and the choice of tools.

BOM: The Bill of Material (BOM) is the inventory or content of a
configuration, consisting of configuration units.

Version management and configuration management: To ensure that
each configuration is assembled from the correct configuration units, the
exact identification of the version of each configuration unit is necessary.

 7.1 Of versions, configurations, and releases 105

This task is done by the version management, which is a foundation for
proper configuration management.

Baseline: A baseline is a configuration with a special meaning. Also
called a snapshot, a baseline’s configuration never changes, so that its
content can always be referred to. A baseline is a record of a particular
configuration including the specific version of its configuration items.

Release: A release is a configuration with a special meaning in the
configuration management process. Typically, releasing a configuration
means to make the configuration available, e.g. releasing the delivery to a
customer with a special enabling process. It is a special form of baseline.

Variant: Variants are configurations with similarities in form, function
or content, usually with a high content of identical components. [DIN199-
1] Components in this context refer to functional parts of the system. This
definition can be extended by adding that individual components of similar
function, form or content are also considered variants. Variants are often
confused with versions. A criterion to distinguish them is: Multiple
variants can exist and be valid for the same purpose at the same point in
time, while versions in a linear development chain follow each other
sequentially. Variants significantly increase the complexity of the system
development workflow.

Branch: A branch consists of one ore more versions of a configuration
unit that exists at the same time as another version of this configuration
unit and is generated through temporal parallel work on the configuration
unit. It is a branch in the linear chain of versions of that configuration unit.
A branch makes it possible to change a configuration unit at the same time,
either by different users, or in different configurations.

The following figure 7.3 shows a version chain of one configuration unit
with a parallel branch. It shows also a merge operation traced in
configuration management. The changes from the parallel branch are
integrated into the linear version chain.

Configuration
Units

– CU 1

Versions
0.1 0.2 0.3 0.4

Branch
0.1.1

Figure 7.3: Branch

Merge: In general, merging is the joining of data. The term merging is
used in two different ways:

106 7 Configuration Management interface

1. It refers to the controlled merging of parallel versions (branches) into
a new, valid version. In other words, the changes made in the different
branches are integrated into a new version line. This case of merging can
usually be traced in the version management system.

2. Merging also refers to the joining of the data from one single
configuration unit, if its content in the version management system
changed since editing began. This case can usually not be traced in a
version management system.

Audit: Many definitions of processes for configuration management use
the term audit. The term has a Latin root (audire: to hear, to attend, listen
to) and means a general investigation procedure. Audits have the objective
to judge processes and process results in respect to given requirements and
guidelines. The objective of an audit is to ensure that the released product
fulfills the requirements.

This is another important clue that shows that requirements management
and configuration management are not independent from each other.

Configuration management: “Configuration management is a discipline
applying technical and administrative direction and surveillance to identify
and document the functional and physical characteristics of a configuration
item, control changes to those characteristics, record and report change
processing and implementation status, and verify compliance with
specified requirements” [IEEE729]. This definition refers to individual
elements of the system, but doesn’t say much about the system as a whole.
The following definition complements the previous one in this regard:
“Configuration management (CM) is defined as the discipline of
identifying the configuration of a system at discrete points in time for
purposes of systematically controlling changes to this configuration and
maintaining the integrity and traceability of this configuration throughout
the system life cycle. “ [Bers1980].

Build: A build is the creation of a configuration, putting the parts
together to create a (sub)system. This term is also used in software
development, a part of systems engineering. A build of software may be
the result of an automatic generation process (e.g. compiling and linking in
software development). A build is based on a well-defined configuration,
often a baseline.

Change Set: A change set is a set of modified configuration units. It
forms a unit in the version system.

Work Area: A work area is a work environment that is reserved for one
editor for editing the managed configuration units. Others cannot access
this area, and therefore cannot see the changes performed there (the
changes that are not yet committed to the system). Editors can usually
create one or more work areas for themselves.

 7.2 Management Disciplines and the German Government V-Modell 107

Configuration management plan (CM plan): The configuration
management plan is an element of the project documentation. There are
standards and guidelines for CM-Plans. The CM-Plan contains guidelines
and processes for the configuration manager, developers and other roles,
regarding the use of the configuration management system. It usually
describes the build process, too.

7.2 Management Disciplines and the German
Government V-Modell

The German Government V Modell refers to a model known as the
“Vorgehensmodell” used for German Government acquisition projects.
The V-Modell is the “Development Standard for IT Systems of the Federal
Republic of Germany”. For a practical overview, figure 7.4 explains the
management disciplines in the context of the German V-Modell.
Management disciplines can be classified into the following two
categories:

1. Management Disciplines that fit into the V-Modell
Management disciplines that fit into the German V-Modell include

definitions of systems and subsystems, definition of components, tests of
components, integration tests, system tests and release.

2. Management Disciplines that span the V-modell but do not fit into it.
There are continual accompanying disciplines that do not fit into the V-

Modell, for example project management and change management.
Other members of this second category are requirement management,

version management and configuration management. A common aspect of
these is that they are not only applied at a specific time during the V-
Modell’s process execution, but that they accompany the V-Modell’s
process continuously from start to finish. These days, some organisations
prefer to not use conventional development processes such as waterfall
model and prefer instead to use iterative development. This corresponds
more closely to how system development is done in practice . An iterative
approach does not only support achieving a high quality of the final
product, but the iterative approach also produces valid intermediate results.
Iterative processes even more dependent on version and configuration
management than traditional processes.

108 7 Configuration Management interface

System Tests

Acceptance Tests

Subsystem Tests

Validation

Verification

... ...

Requirements
Management

System
Definition

Subsystem
Definition

Release

Figure 7.4: V-Model

7.3 Configurations in the Context of Requirements
Management

Is it enough to consider the whole specification (consisting of
requirements) as a configuration unit? What does a specification consist of
in the first place? It consists of individual requirements and additional
information. Each piece of information, whether it is a requirement or not,
is denoted as an object in the following discussion. Objects can have
properties (also called attributes) and relationships to other objects.
Typically, the specification is considered as a configuration, and the
objects (including their relationships to each other) are the configuration
units. This perspective proved to be useful for the management of
requirements information.

This organization of requirements raises a number of questions,
including the following ones:

• Who “owns” the relationship between objects, the source or the target
object?

• How can the relationships be taken into account in the context of
configuration management?

On the other hand, a specification can also be considered a configuration
unit within the configuration of the information model. This suggests an
iterative process. Perhaps you prefer to consider the process as a fractal,
where the closer you get to a configuration item, the more you see that it is

 7.3 Configurations in the Context of Requirements Management 109

itself a configuration of parts which each have their own identities and
versions.

7.3.1 Changes of requirements and specifications in practice

Requirements and specifications might change frequently, and at specific
times, baselines of specifications need to be created. Baselines define a
configuration at a specific time, and record its requirements and the
relationships between them. In iterative development, there can be multiple
important configurations: From the initial specification through testing to
the final implementation of a system, multiple versions of a requirement
can be referred to in multiple configurations. The various versions of a
requirement must be accessible. At least each version of a requirement that
is referred to from a baseline of a specification must be reproducible.

Here is an example from real-world system development: The change of
a requirement must not affect the creation of a prototype that is based on
an older version of that requirement. But in order to achieve this, the old
version must be accessible.

Another common situation is the development of a product for different
markets. A car, for example, shall be sold in the UK, Europe and the USA.
As there are different regulations in various countries, only the basic
components are identical – engine, body, etc. But the details will differ for
the various markets.

This is a classical example for variants. When variants were defined
earlier in this chapter, we already hinted at the fact that their use can
increase the complexity of the development process considerably. The
development of system variants poses special challenges for both
configuration management and requirements management.

Back to the previous example: While the cars for different regions
differ, from the point of view of production it is desirable to maximize the
number of common components. To achieve this, the car configurations
must be known and understood in order to distinguish parts that can be
common from parts that must differ.

This challenge applies both to requirements and the development
product. When a request for the change of a requirement comes in, the
affected component may or may not have variants. If the component has
variants, not all of them may be affected. The change management
becomes much more complicated, because all variants have to be
considered for the evaluation of the change.

Let’s look at the situation when in two of the three regions for which we
produce cars, the regulations are made identical. To simplify production
the two formerly region-specific variants of the car that were managed

110 7 Configuration Management interface

independently in the past shall be transferred into one product with no
differences in production. There are various approaches to achieve this.
One option is to start with one variant and to integrate the differences from
the other one into that variant. From an abstract point of view this means:
changes are necessary, thus change management is crucial.

New versions of configuration units are created, and those have to be
put together into a new configuration. It is impossible to perform all these
tasks without version and configuration management. A corresponding
situation exists in regard to the requirements: Requirements must be
changed as well, to accommodate the integration of the requirements
variants.

To manage the requirement changes, version and configuration
management are used – the same techniques and management disciplines
that have been introduced earlier for the system changes. Configuration
management for cars is much more complicated in reality; it has been
simplified significantly here to get the point across. Regional differences
are just one example for variants in cars. Other examples for variants
include décor, similar components from different suppliers, type of car
(limousine, estate) etc. all the way to engine size and type (diesel,
gasoline).

The number of combinations seems endless. This leads to the situation
that statistically each car consists of a unique configuration. To see an
example, have a look at the car configuration tools that some car vendors
offer on the Internet. Requirements for configurability production lead to
highly standardized interfaces between components. Considering the
complexity in the management of variants, to forget appropriate
requirements management would be a big mistake. Requirements are the
foundation for system development.

Problems in the foundation can lead to severe problems later on,
including the collapse of the structures resting on it – just visualize a house
built on sand. This danger is very real and can’t be emphasized enough!
This danger can be avoided by the creation of a solid foundation in
systems development in the form of proper requirements and configuration
management.

7.3.1.1 Solution Concept: Configuration Management
for Requirements in Practice

How version and configuration management of requirements can be
implemented, will be demonstrated here, using the requirements tool
DOORS® from Telelogic. In DOORS, requirements are organized in
containers, called Modules. A requirement cannot exist outside of its
container. This distinguishes DOORS from most tools that access

 7.3 Configurations in the Context of Requirements Management 111

databases, and has implications on the usage of the tool. A requirement
cannot be in two containers; instead a copy of the requirement must be
stored in one of the containers. DOORS maintains a change history for
each requirement, including date of change and information about who
changed the requirement.

A history dialog and an API (application program interface) for
scripting are provided to access old versions of objects, and to copy them
to the current configuration. It is also possible to create baselines to store
specific configurations of requirements. But this mechanism isn’t
sufficient to access different versions of a requirement concurrently. One
solution would be to copy requirements on every change, together with an
attribute for storing the version numbers managed manually by the user.
But this creates another problem:

Now the dependencies between requirements versions that means the
logical timeline relationships have to be stored and managed as well.
Depending upon the method of creation of a new object, newly created
DOORS Objects might have no relationship to other objects and can be
moved within a container (Module) in any possible way. There are
different possible solutions.

For instance, logical timeline relationships could be implemented by
using links to connect objects to their successors. Another option would be
the use of the hierarchy within a Module to model the logical timeline of
requirements. Relationships between requirements are rarely considered
for configuration management in tools. DOORS is not different in this
regard. The versioning of relationships (called Links) does not exist in
DOORS (version 8.0) unless you change things to make it happen. Saving
the link information to an attribute gives the possibility to trace the history
of changes and to denote versions link information.

The links may be automatically generated from this information within
an attribute. Using standard DOORS features a link from a source
requirement to a target requirement is stored together with the source
requirement, but no history on link changes is kept.

If the link is deleted, it simply vanishes from the database. When a link
is moved, only the final state is preserved. As stated above it is possible to
archive link information by storing the link information in an attribute of
the source and target requirements, which creates redundancy.

Changes on these attributes are archived together with their respective
objects (as all object attributes are). This technique allows the archiving of
any relationship within the database. DOORS offers another technique:
Baseline Sets are groups of configurations. But before they can be used,
the modules in the database have to be organized in an appropriate way.
Relationships can only be archived within these groups.

112 7 Configuration Management interface

In order to allow every relationship in the database to be archived, the
whole database must be grouped into one Baseline Set.

7.3.2 Requirements Management – Configuration Units

The following chapter defines the adequate configuration units in
requirements management, the resulting challenges and possible solutions
to these challenges.

Object model for requirements: In the following, a process model for
configuration management of requirements will be presented by starting
with the terms that were defined earlier.

The data model used in this example has been taken from the RIF
Project (Requirements Interchange Format, HIS 2005) and provides a
foundation on how requirements can be broken down into data and data
structures, so that they can be managed. It was specifically developed for
the exchange of requirements, and provides an abstract, tool-independent
view on data structures of requirements.

cd Structure

SpecElementWithUserDefinedAttributes

Identifiable

SpecHierarchy
SpecElementWithUserDefinedAttributes

SpecElementWithUserDefinedAttributes

SpecHierarchyRoot

SpecGroup

SpecObject

+ children *{ordered}

+
ch

ild
re

n
*{

or
de

re
d}

+ specObject 1 + specObjects *
1...*

Figure 7.5: RIF model, specification object

Figure 7.5 above shows an excerpt from the RIF model the structures of
specification objects. Note that the structural information of requirements
(in the form of a hierarchical tree structure) is kept strictly separate from
the specification objects. The root of the tree structure is an element of

 7.3 Configurations in the Context of Requirements Management 113

type SpecHierarchyRoot. This element aggregates elements of type
SpecHierarchy, which recursively aggregate elements of the same type
(children). This setup allows the creation of any hierarchical tree with one
well-defined root. The leaves of this tree-structure have pointers to the
actual specification objects.

Compared to this rather complex tree structure, the organization of
specification objects into groups is trivial. The type SpecGroup refers to all
the specification objects belonging to its group.

These two schemes, which can exist in parallel, allow both the
hierarchical organization and grouping of requirement objects
(SpecObjects). It is particularly important to note that this approach leaves
the traditional document-paradigm behind, where a document was the
central container for requirements, in the form of the specification
document. The scheme that we just introduced allows the creation of views
on the data (filtered and unfiltered), and such a view can be interpreted and
exported as a document in the classical sense (see Viewpoints in
[Somm98]). The model has additional structures for the modelling of
dependencies.

cd SpecElementWithUserDefinedAttributes

SpecGroup
+ specObjects

* 1...*

SpecHierarchyRoot

SpecRelation

SpecObject

Identifiable

SpecElementWithUserDefinedAttributes

+ SOURCE

1
+ TARGET

1

Figure 7.6: RIF model, specifcation relations

Figure 7.6 contains a schema that allows the creation of relationships
between instances of SpecObject through the SpecRelation entity. As a
SpecRelation has a source and a target, the relationship is directional.

RIF provides all necessary data models to represent requirement objects
and their relationships, as well as the ability to export this data in a defined

114 7 Configuration Management interface

format. Tools in configuration management could then be used to archive
requirements data, thereby applying the techniques of configuration
management to this data.

7.4 Traceability in Requirement Management
and Configuration Management

This Chapter opened with a number of reoccurring questions in the field of
requirement management. How, for instance, can configurations and
dependencies be managed, if they contain requirement specifications, test
specifications, design documents, and implementation files?

Requirements management can and must cover all these, as it deals with
the whole chain from customer requirements to system requirements,
design models, component requirements all the way to test specifications,
including their dependencies. Implementations can be included as well, but
to achieve this, they have to be put in relation to everything from system
configurations to managed components and tests.

In other words, an interface between configuration management and
requirements management is necessary to access information in regard to
all components. Only with such an interface is it possible to associate an
up to date, consistent specification with a valid release. Furthermore, to
answer questions regarding progress or change effort, an interface between
configuration and change management is also required.

Monitoring the progress of the project – like the number of implemented
requirements or processed change requests – cannot be done without
information about requirements, about the implementation, and the
relationship between them. Change requests affect specifications, tests and
the actual implementation, and for accurate estimates and tracking, both
disciplines are necessary.

Good estimates for change requests are particularly important, as they
often form the basis for management decisions and systematic execution.
This cannot be achieved without the functionalities of RM&E and
configuration management.

Figure 7.7 shows another interface between requirements management
and configuration management. Just one management discipline isn’t
enough to answer all these questions. The cited goals and challenges can
only be fulfilled by skilled use of requirements management and version,
configuration and change management, respectively. But the interlocking
of the contributing processes must be planned and structured properly to
take advantage of the synergies. Tool support, especially regarding the

 7.5 Tool Use for Version and Configuration Management 115

interfaces between processes, is advisable, particularly for complex
projects.

R
eq

ui
re

m
en

ts
M

an
ag

em
en

t
System Requirements

Subsystem Requirements

Component Requirements

Source Code / Hardware

.........

HW/SW Modules Requirements

Traceability

C
on

fig
M

gt
. Executables

Hardware
Product

Figure 7.7: Traceability

7.5 Tool Use for Version and Configuration
Management

A fundamental requirement for a version management system is the
assignment of a unique identifier to each state of each configuration unit.
This can even be done manually on a file system, for instance by including
the relevant meta data (date, time, release state, editor) in the file name, for
example: KM_Kolleg_20050505_1715_Keller_1.0.doc.

For each additional state, a copy of the file is stored with an updated
time stamp. This simple scheme can be useful for documents, but fails for
source code and all other files where cross-reference between file names
exist. This could be fixed by moving the meta data into the files. But then
the old files have to be backed up in some way to prevent overwriting.
Another method is to copy each file with the time and date stamp to create
a file with a general name.

This is sometimes done automatically when using a MAKE file for
instance to ensure that the most up-to-date files are used to create an

116 7 Configuration Management interface

executable code. Another option would be to keep separate text files listing
each managed file with their history. This, however, would be even more
error prone than the other processes (if done manually). While some
operating systems track time stamps and even users, this information is
rarely sufficient for version management either.

To manage configurations of files manually, discipline and a good
process are indispensable, and still the number of files and directories, as
well as storage space, can quickly get out of control. Professional tools for
configuration management have comfortable process support and
automated archiving methods. Invisible to the user, typically they store
only changes between versions using a “reverse delta” mechanism, thereby
minimizing the required memory. The reverse delta algorithm stores only
the latest version as a whole.

For all previous versions, only the difference (delta) to the previous
version is stored. By applying all earlier deltas to the current version, any
past version can be reconstructed. The reverse delta method was initially
only applied to ASCII files, but today it is commonly used for binary files
as well. Even more advanced tools incorporate object oriented concepts
and database technologies for the management of versions. The meta data
(version numbers, editor, time of modification, labels, etc.) is stored in
attributes that are associated with the object to be archived.

The history is a database-managed relationship as well. Modern systems
allow the storage of multiple, uniquely identified configurations without
having to duplicate equal elements that happen to occur in multiple
configurations. The tools also provide access control. For instance,
concurrent edits on the same element may not be allowed, or the tool
provides mechanisms for controlled merging. Complex projects should not
be run without proper tool support in configuration management: “Modern
software configuration management will contribute considerably to the
success of a project - if applied correctly.

It will structure the software development and test processes, spanning
the whole lifecycle to make everything predictable and traceable.
Monitoring of well-defined releases is ensured, too. It aids the
unambiguous definition of various configurations, both for the system and
its documentation. Changes are always traceable and verifiable, when,
who, what and on who’s behalf the system was changed” [Kreu2004].

7.5.1 Solution Concept:Traceability in Practice

The following example will demonstrate how configuration management
and traceability can be realized beyond the boundaries set by tools. Some
tools allow the creation of placeholders – elements that are managed by a

 7.6 Summary 117

different tool. Telelogic DOORS®, for instance, allows the creation of
placeholder (surrogate) modules that contain elements that are archived by
a different tool, Telelogic Synergy™, Synergy, or Serena® PVCS® for
instance.

With this configuration, a relationship between source code and
requirements can be established and managed. Within DOORS, source
code can now be managed inside of the surrogate Modules with additional
metadata. From here, it can be linked to requirements, which establishes
the traceability within the requirements management tool.

For every source code file and every version a placeholder object exists
in the RM tool. Requirements, test cases and so on can have relations to
these objects. For this to be useful, the tools must be synchronized on a
regular basis.

Test specifications with their different versions can be archived even
more comfortably by using a configuration management tool. Data can be
exchanged via an API, COM interface (on Microsoft Windows), or via
command line tools.

But requirements management tools like DOORS offer the option to
archive test specifications and test results as well. If the artifacts from
testing are stored in the requirements management tool, the test coverage
of the system can be traced easier than otherwise.

Realistically, which test results should be archived? Certainly the results
of system tests should be archived. It can be counterproductive to store all
results of automated unit tests unless you can handle the large amounts of
data effectively. If the results of a test are not important enough to store,
you should question why you are performing the test.

7.6 Summary

Requirement management can be interpreted as a collection of interfaces
to process areas, where the process for defining requirements forms the
core [Hood2005]. These interfaces can be the starting point for an analysis,
and in this chapter, we analyzed the process areas version management,
configuration management, and their relationship to RM&E.

In the following figure we have chosen to place requirements definition
in the centre, to show the interfaces between systems engineering
disciplines and requirements development. The sum of these interfaces
describes requirements management. The following figure visualizes the
idea that requirements management can be interpreted as a collection of
interfaces to process areas.

The process area of change and configuration management consists of
the management of versions, configurations, variants and changes. To

118 7 Configuration Management interface

provide a foundation for further discussion, a number of key terms in
configuration management were defined in this chapter.

Change
Management

Version
Management

Test
Management

Requirements
Development

Configuration
Management

Risk
Management

Quality
Management

Project
Management

Figure 7.8: Requirementsmanagement interfaces

The RIF model provides a foundation for the management of
requirements as data and data structures (rather than documents). The
RM&E data model incorporates ideas and developments in configuration
management. In other words, elements in RM&E are complex and so are
their relationships. This complexity suggests the use of version and
configuration management, to allow the recreation of earlier configurations
of requirements. This is essential for proper requirements management.
RIF provides the data models required for a well-defined representation of
requirement objects and their relationships, which allows for their export.

An interface between requirements and configuration management is
necessary to capture information regarding components that are affected
by requirements management and implementation components .
Configurations that not only contain specifications, tests and design
documents, but also software code, can only be managed when the
disciplines of requirements and configuration management are brought
together. In order to cover the whole traceability chain from customer
requirements to system requirements, design models, component
requirements all the way to implementation (e.g. software code) and test
specification. This can only be achieved with an interface between

 7.6 Summary 119

requirements management and configuration management. Systematic
project monitoring and accurate change request management is only
possible if requirements, version, configuration and change management
are skilfully applied together. To take advantage of the resulting synergies,
the interlocking of the participating processes must be planed carefully and
implemented in a structured manner. In complex projects, it is highly
advisable to also have tools that support the interfaces between processes.

8 Metrics and Analysis

One of the subject areas in both CMMI and SPiCE is the improvement of
requirements management (or requirements management & engineering).
Consequently, companies often initiate projects for introducing a standard
methodology. Hence the progress of work in a project to create a system
and also a project to improve a process are both of interest. This chapter
describes, among other things, how both can be measured.

8.1 Metrics – general

Metric comes from Greek meaning "census or measurement". The word
metric is often used within the context of measuring processes. The term
has several definitions within software engineering.

The IEEE Standard 1061 describes a metric as follows:
"A software quality metric is a function that describes a software unit
numerically. The value calculated can be interpreted as the degree to
which quality attributes of the software unit are fulfilled."

Another definition comes from Ian Sommerville. This is:
"A software metric is any kind of measurement that relates to a software
system, a process or to the corresponding documentation."

In this chapter, which is about how metrics should be used in the area of
requirements management & engineering, these definitions can only be
applied with difficulty. Therefore a metric can be defined here as follows:
"A metric measures the quality of results. This is achieved by defining
measurement criteria and procedures by which means the degree of
fulfilment of predefined goals in requirements management & engineering
can be determined."

122 8 Metrics and Analysis

8.2 The Importance of Metrics

Measurement is a very important part of quality assurance. Here results
should be measured in order to form the basis for a decision as to whether
the quality standards have been met.

Measurement includes defining a benchmark by which the results are
measured. Since a benchmark changes (or should change) only very rarely,
this succeeds in producing a relatively "objective" evaluation of the results.
Metrics are ideally the basis for drawing conclusions as to the quality of
the results, and for determining what improvements are to be initiated. If
no measurement is made, it can only be guessed what the results of the
work are like.

J.C.Maxwell expressed this very well with the phrase "To measure is to
know".

Tom de Marco articulates this point somewhat more forcefully: "You
can't control what you can't measure"

Metrics are the fundamental basis for all controlling and management
bodies. Whether for the classic finance department, when measuring
financials and liquidity, cash flow and balance sheet totals; or the
management board deciding on company strategy. Another technical
example is a sensor in a vehicle, which measures the distance from the
vehicle behind when parking; and by which the driver, on the basis of an
acoustic tone or light signal, decides whether there is enough space.

Measurement is also of key importance in modern quality management.
Hence, in terms of a continual improvement process, it is necessary to
evaluate results, identify defects, and to define and implement actions for
improvement. The Deming Circle is a classic example for this:

Study

Plan

Action Do

Figure 8.1: Deming Circle

For the evaluation of current results, and evidence as to the success of
improvement measures, one or more metrics are required.

 8.3 Attributes of Metrics 123

8.3 Attributes of Metrics

An important point is that only a part or one aspect of reality can ever be
measured with a single metric. Controlling and management bodies must
always be aware of this fact, in order to be able to make "correct"
decisions. If the turnover of a company increases dramatically during one
quarter, this metric has a completely different meaning in conjunction with
another metric showing a decline in profits during the same period.

For example the effects of a discount promotion can generate
significantly higher turnover. The profit margin will however at the same
time be reduced so that, in the worst case, the additional turnover does not
bring any increase in profits.

The values of the individual metrics are therefore normally insufficient
to be able to make well-founded judgements. For this reason, metrics must
be carefully selected and their attributes must be described.
Metric attributes could be the following:

• Goals supported by the metric
• Customers of the metric
• Interval of measurement
• Data or measurements used
• Unit of measurement
• Data source (Effort required to capture/reliability)
• Interpretation of results
• Strengths and weaknesses of the metric
• Prerequisites for measurement
• Presentation format of the metric

The following is a more detailed description of the individual attributes.
Controlling and management bodies should be aware of each of these
attributes, in order to be able to evaluate the importance of the metric.

8.3.1 Goals Supported by the Metric

When metrics are implemented for the first time in an organisation there is
always a danger that too many metrics are generated, and that one loses
sight of the actual objectives of a metric. Each measurement requires effort
and therefore also costs money.

Consequently, when defining a new metric, it's essential to describe the
goal that is to be measured as having been fulfilled.

Conversely, where no objective can be determined for a metric, it also
does not make sense to define the metric.

124 8 Metrics and Analysis

8.3.2 Customers of the Metric

The customer of the metric is the controlling or management body, which
on the basis of the metric defined, is able to intervene. As a rule this is
management, which can get an idea as to the extent to which a goal has
been achieved on the basis of the metrics.

Management can then also make decisions based on the results. The
customer of the metric is thus a forum that can also influence the processes
and methodology.

8.3.3 Interval of Measurement

The time interval in which a measurement should be undertaken is given
here. An important factor surrounding this interval is the cost or effort
required for measurement. A second factor is the change that can be
expected between the measurements.

Generally, metrics that are implemented on the basis of reviews are
significantly more time and cost intensive to implement than "automatic"
measurements, which are made on the basis of an existing database.
Reviews require a certain amount of preparation and follow-up work, so
that a short interval makes little commercial sense.

In the case of automatic analysis of a database and automatic processing
the effort is normally not so high, so that it can be worthwhile measuring
in shorter intervals.

8.3.4 Measurements Used

What is to be measured should be described here. This could, for example,
be a head count, the number of requirements with a particular status, or the
number of discrepancies in a review.

8.3.5 Unit of Measurement

The unit of measurement is described here. This can for example be a
percentage or perhaps the effort (in man days).

8.3.6 Data Source (Effort required to capture /reliability)

The data source should be described here, e.g. is it a database, review
audits or training lists? Here it is important to indicate what level of effort

 8.3 Attributes of Metrics 125

is required to capture the data and whether this data is reliable. Thus in
some circumstances it does not make any sense to conduct analysis,
knowing that a database used for the analysis is only sporadically
maintained.

8.3.7 Interpretation of Results

This attribute is very important in order to provide the controlling and
management bodies with assistance in interpreting the analysis. This
section attempts to describe how the analysis, in relation to the degree to
which goals have been achieved, is to be interpreted.

8.3.8 Strengths and Weaknesses of the Metric

Because a metric can, as a rule, only describe a part of the reality, it also
has weaknesses. Thus a purely statistical analysis can, without knowledge
of the weaknesses, produce a "false picture" of reality. In some
circumstances the reality is only clearly described in combination with
other metrics.

For this reason in particular, knowledge of possible weaknesses is so
important for control and management.

The strengths of a metric can equally be described here. A strength can
be, for example, that it can be produced very quickly as required without a
large amount of effort.

Knowledge about strengths and weaknesses is also a basis for deciding
whether the metric should be used at all.

8.3.9 Prerequisites for Measurement

This attribute describes the prerequisites for a measurement making sense
at all. For example, it is necessary for the data on which the measurement
is based to be up-to-date, or at least regularly maintained.

8.3.10 Presentation Format for the Metric

The presentation format for the metric is described here. Normally but not
necessarily, this is one or more graphics in which the analysis is presented
visually.

126 8 Metrics and Analysis

8.4 Typical Improvement Goals with RM&E

The focus in this book is on projects that are aimed at improving
requirements management & engineering within an organisation. It is
therefore important for both the customer and consultants to be able to
measure the success (or level of achievement) when introducing structured
requirements management & engineering. To then be able to produce one
or more metrics, it is important first of all to identify the goals of the
organisation, or of the improvement in requirements management.

For example, there are company goals from which requirements
management goals can be derived. These are goals related to quality
management goals, like reaching a particular level in CMMI or SPiCE.
Some typical goals are described below:

8.4.1 Reduction in Change Costs

A reduction in change costs is the main goal of introducing structured
requirements management. Change costs are incurred where there are
variations to an original project plan. The reasons for these variations can
be, for example; that the resource situation has changed; the deadline has
been altered, the market situation has changed in respect of a product
development; or that errors, gaps, inconsistencies and misunderstandings
are discovered.

The cost of changes generated by mistakes, gaps, inconsistencies and
unclear documentation of requirements can be reduced, if these are
recognised early in the development process. Structured requirements
management helps in this respect.

However in practice, being able to measure the reduction in costs as a
result of implementing structured requirements management, leads to
several difficulties.

To be able to prove a reduction in change costs, it must first be
ascertained what mistakes, gaps and inconsistencies in the respective
requirements documentation there may have been in a previous project. In
some organisational cultures, the then responsible project manager might
not be particularly enthusiastic about additional costs being calculated
from "avoidable" flawed specifications.

But when, for the reasons given above, no previous project can be
considered and we restrict ourselves to the current project, it will be
difficult to measure what effects a gap, discrepancy or error in the project
discovered through the timely implementation of RM&E methodology
would have had.

 8.4 Typical Improvement Goals with RM&E 127

Thus a metric, which directly attempts to measure the main goal of the
introducing RM&E methodology, namely the reduction in change costs,
might be difficult to apply in practice. If the organisational culture is open
and sees previous mistakes as an opportunity to improve, there will be
little difficulty with measurement and publication of metrics.

8.4.2 Reaching CMMI Level 3 in an Assessment

This goal is generally aimed for because the customer organisation
demands proof of a certain level when selecting their suppliers. Therefore
this goal is extremely important for a company, to ensure that it is not
excluded by these customers before even producing the offer.

In the context of reaching the appropriate level, it is very important for a
supplier organisation to implement structured requirements management.

A prerequisite for Level 2 of the CMMI model is that requirements are
managed and inconsistencies with the project plan and results are
identified.(see Capability Maturity Model ® Integration (CMMI SM),
Version 1.1 (Staged Representation)).

Requirements must be developed for Level 3 of the CMMI model. Thus
stakeholder requirements must be elicited and collected. These must in
turn be translated into product requirements.

8.4.3 Reaching a Specific SPiCE Level in an Assessment

SPiCE is a similar model to the CMMI model and one which some
companies choose to use. As with the CMMI model, various levels are
defined, which describe the level of maturity of the organisation in
implementing and defining company processes. Requirements
management plays a role in the following categories in the SPiCE model:

• CUS.1.1 Identify the need.
• CUS.1.2 Define the requirements.
• CUS.3.1 Obtain customer requirements and requests.
• CUS.3.2 Understand customer expectations.
• ENG.1.1 Specify system requirements.
• ENG.1.2 Describe system architecture.
• ENG.1.3 Allocate requirements.
• ENG.2.1 Determine software requirements.
• ENG.2.2 Analyze software requirements.
• ENG.2.3 Determine operating environment impact.
• ENG.2.4 Evaluate requirements with customer.

128 8 Metrics and Analysis

• ENG.2.5 Update requirements for next iteration.
• PRO.4.1 Agree on requirements.
• PRO.4.2 Establish customer requirements baseline.
• PRO.4.3 Manage customer requirements changes.
• PRO.4.4 Use customer requirements.
• PRO.4.5 Maintain traceability.

The following goals can be derived in the context of the above goals:

8.4.4 Introducing and Establishing RM&E Methodology in
Pilot Projects

The focus here is on evaluating the introduction of predefined RM&E
methodology. Thus pilot projects are designated, in which methodology is
to be applied in the context of a concrete RM&E project. Employees are
generally sceptical towards changes in the way they work.

It is therefore very prudent to first of all implement the changes in one
or more pilot projects. The advantages are obvious. Firstly, the pilot
projects can be managed very intensively by a limited number of
consultants. Secondly, as a rule, adjustments to the methodology are
necessary depending on company circumstances; and these are better
implemented in intensively managed pilot projects.

8.4.5 Creating Basic Know-How in RM&E Amongst Employees

Here the objective is to make employees capable of using RM&E
methodology in their projects.

Usually this is initially done in the form of general RM&E training
sessions. As a rule, these training sessions are not sufficient, but necessary
to achieve a basic understanding of RM&E methodology.

Another possibility is to brief employees on the job and thus implement
knowledge transfer. This way of creating a basic level of know-how is
however very time-consuming, so that this kind of know-how transfer
seldom happens.

8.4.6 Improving the Quality of an RM&E Process

Business processes are dependent on several factors that are very
organisation specific. These factors are, among other things, existing
organisational structures, employee skills, available tools (e.g. software)

 8.4 Typical Improvement Goals with RM&E 129

for supporting the processes and company goals. Thus in every
organisation there is always an RM&E process. The question is whether it
is structured, documented and reproducible, and of course what results the
process delivers.

Evaluating business processes alone, in respect of their quality, can then
only succeed where we keep other factors (staff/ tools / etc.) constant; and
only change the process flow. Next the results must then be measured
before and after the change to the process flow.

Incidentally, measurements should not just be made immediately after
the change. Process start-up and changeover problems alone can lead to
deteriorations in the results, which are then later put into perspective.

8.4.7 Improving Customer and Supplier Specifications

The question here is how the quality of customer and supplier
specifications can be measured. For example, there are quality criteria for
both the overall specification and for individual requirements.
Quality criteria for an overall specification include:

• completeness
• consistency
• necessity
• free of duplication

Quality criteria for a requirement include:

• complete
• free of contradiction
• unambiguous
• feasible
• understandable
• testable
• identifiable
• atomic
• free of duplication
• correctly derived
• traceable to source

Generally these criteria can only be measured through reviews. There is
also an approach implementing automatic measurement based on counting
the so called weak-words. This has the advantage that it can be automated
but it can also be counterproductive. (See Section 8.7)

130 8 Metrics and Analysis

8.5 Example of a Metric

The following shows how a metric is defined based on the example
"Creating a basic level of know-how in RM&E amongst employees". The
metric is used by a car manufacturer who wishes to train a large number of
engineers in the use of RM&E methodology. In this case, an RM&E
project manager, reporting to an RM&E steering committee, is responsible
for the success of the project.

8.5.1 Creating a basic level of know-how in RM&E amongst
staff

8.5.1.1 Goals supported by the metric

• Precise requirements for the contractor
• Early discovery and prevention of errors and inconsistencies in

requirements
• Traceability of the effects of changes in requirements as far as the

supplier specification.

8.5.1.2 Customers for the metric

• RM&E project managers
• RM&E steering committee

8.5.1.3 Interval of measurement

• Monthly

8.5.1.4 Data used

• Total number of people who should have taken part in training up to the
end of 2005.

• Number of people who have taken part in training (RM&E
Methodology Training or Introduction to DOORS) up to time of
measurement.

• Date of taking part in training for each person

 8.5 Example of a Metric 131

8.5.1.5 Measurements used

• Number of people who have taken part in RM&E training vs. those
who, according to the plan, should have taken part.

8.5.1.6 Data source (effort required for capture /reliability)

• Forecast data from departments responsible
• Attendance lists for the respective training sessions
• Effort to obtain: moderate (with attendance lists)
• Reliability of the data: very high

8.5.1.7 Interpretation of results

• Training is the basis by which the defined RM&E methodology can be
implemented.

• The earlier in the project people participate in training, the sooner they
will be able to work according to the defined RM&E methodology.

• The fewer people trained during the project, the higher the risk:
• Individual coaching requirements of the engineers increases so RM&E

specialists are fully occupied with support tasks

8.5.1.8 Strengths of the metric

• Objective measurement of the number of people participating in RM&E
training during the period is possible

• Early indication of problems in implementing RM&E methodology
possible.

• Indication as to the level of employee or section leader acceptance in
respect of the introduction of RM&E methodology

8.5.1.9 Weaknesses of the metric

• Participation in the training does not allow any assessment as to the
ability to implement RM&E methodology in the work place.

8.5.1.10 Prerequisites for measurement

• Forecasts of employees to be trained are made available by the
departments responsible.

132 8 Metrics and Analysis

8.5.1.11 Presentation format for the metric

actual

N
um

be
ro

f e
m

pl
oy

ee
s

tr
ai

ne
d

Aug05 Oct05 Dec05 Feb06 Apr06 Jun06

planned

50

25

100

85

Figure 8.2: Presentation of the metric
"Creating a basic level of know-how in RM&E amongst employees"

8.6 The Evaluation of a Metric by Management

A metric is not an end in itself, but is produced as a guideline for
management and provides a basis for decisions, in order to continually
improve work processes and to be able to evaluate the effects of decisions.

Often the data for the metric is used as a sole basis for decisions. This
can however lead to fatal misinterpretations because the following is not
taken into account: A metric can normally only measure one aspect of
reality.

In the above example, both the number of people participating in the
training and the forecast figures are presented. When the chart is very close
to the forecast chart, this implies that up to June 2006, almost all planned
participants had actually participated in the training. At first glance,
everything is in order. However, what the graphic does not reveal is that,
up until June 2006, not all departments had submitted their forecasts as
requested.

This aspect of the completeness of the forecast is not captured by this
metric. When analysing metrics it is therefore very sensible to scrutinise
the data collected, in order to find out about the metric's weaknesses.
Management should therefore carefully read the attributes of the defined

 8.7 Psychological Aspects of Introducing RM&E Metrics 133

metric before making decisions, particularly "interpretation of the results"
and "strengths and weaknesses of the metric".

MethodsProcessesTools Employees

Management

Work results Metric
(with quality criteria)

produce

se
rv

es
fo

rd
ec

is
io

ns

in
flu

en
ce

s

Figure 8.3: Relationship of the metric to management,
results and employees

8.7 Psychological Aspects of Introducing RM&E
Metrics

The previous section described the purpose of a metric as being to provide
management with a basis for making decisions in respect of improving
processes, methodology and tools. Another aspect of metrics is that
employees, whether intentionally or unintentionally, are influenced by the
measurement itself. That is providing the employees know about the
measurement.

This influence can have both positive and negative effects. The positive
effects are that agreed change processes are executed more quickly
because their implementation is measured. A negative effect can be that
the employees also recognise the limitations of a metric and then
consequently exploit them.

The following example helps to explain this: A metric can be defined
that counts the number of so called weak words that appear in a
specification. Weak words are words that are good places to start to
improve a specification because the weak words do not describe the
requirement explicitly enough. These are words like preferably, fast,
automatically, cyclical…

134 8 Metrics and Analysis

At first glance, there is the possibility to count the number of weak
words in a specification in order to be able to make an assessment about its
quality. When authors of a specification are aware of this sort of metric, it
can be that they respond to it accordingly. The outcome can be that a
requirement, which cannot be described without these weak words, is not
specified at all. This is fatal because a badly specified requirement can be
improved during the project; an unspecified one is lost.

Another example of the positive effect of a metric on employees is as
follows:

A company had communication problems in sales & marketing,
between the individual regions and central product management. The
complaint was that change requests, which sales & marketing had
documented and sent to product management, were not taken into
consideration in product development. There was also no feedback from
product management to the person making the request. In this respect, a
process for handling change requests was agreed.

Despite this, the processing of change request did not function to the
satisfaction of sales & marketing. As a result, a metric was introduced that
captured how many change requests were not processed or for which no
feedback was given to the sales region (open requests). This was
introduced for three different product lines. The result is shown in the
following graph:

Product B

N
um

be
ro

f o
pe

n
ch

an
ge

re
qu

es
ts

Aug05 Oct05 Dec05 Feb06 Apr06 Jun06

Product A

65

60

Product C

40

60

45

35

Figure 8.4: Metric "processing of change requests"

The interesting thing about the graph is that the number of change
requests classified as "open" hardly changed between December 05 and
February 06. This figure actually increased slightly for all three product
lines. From February 06, the number of "open requests" fell dramatically.

 8.8 Summary 135

What had happened? At the beginning December 05, a metric was
approved to measure the number of open requests. The results of the
metric were presented to top management sometime in January 06. Product
managers responded accordingly and seemingly explicitly accepted the
open change requests, which resulted in a rapid fall in these requests.

This fact alone may however, despite everything, not be sufficient to be
able to make a statement as to whether the regions were happy with the
processing of their change requests. After all the metric only measures
whether the status of the change request has been altered from "open" to
"closed". In conjunction with another metric, the number of newly made
change requests, we can however draw further conclusions.

The number of newly made change requests is measured by the
following metric.

Product B

N
um

be
ro

f n
ew

ch
an

ge
re

qu
es

ts

Aug05 Oct05 Dec05 Feb06 Apr06 Jun06

Product A

5

3

Product C

1

7

6

2

Figure 8.5: Metric "incoming change requests“

Here it is possible to see that, between February and the middle of
March, the number of incoming change requests was constant. The number
for all three product lines then increases rapidly from April. Evidently the
sales regions were so motivated by the feedback from product managers,
that they submitted more change requests. In this example the positive
effects of metrics are apparent.

8.8 Summary

In summary, we can say that metrics are essential management tools and
essential for motivation when implementing change processes.

136 8 Metrics and Analysis

When creating metrics, care must be taken to make sure that they are
aligned to company goals.

When analyzing the results from metrics, it should always be
remembered that a metric can only ever measure one aspect of reality; and
therefore every metric has it weaknesses. Management should not make
decisions based purely on the figures from a metric. A metric can only
give an indication of possible problems and make management aware of
potential mistakes early on. It is therefore always advisable to examine
these indications in more detail, before taking management action.

Last but not least, the psychological effects of introducing a metric
should not be ignored. Employees respond to metrics. When designing
metrics, this can be used in a positive way.

9 Risk Management interface

One of the most important tasks of project management is the prediction of
any circumstances that may be detrimental to the project in view of
planning and scheduling, in view of the quality or in view of the
development costs. The identification of possible risks and the definition
of suitable countermeasures to minimise their impact on the project is
usually called risk management ([Hall1998, Ould1999]). Risk management
makes sure that all information related to risks is properly documented and
accessible to the relevant project members.

9.1 What is a risk

In principle, a risk can be thought of as being a circumstance with a
significant negative effect on the project, and which may or may not occur.
As risks may threaten the project, the product to be developed or the
organisation that carries out the development, [Somm2001] suggests to
classify risks as follows:

• project risks: these are risks which may affect the project schedule or
resources

• product risks: these are risks which may affect the quality or
performance of the product being developed

• business risks: these are risks which may affect the organisation
developing or procuring the product

This classification appears problematic, as the three categories are
usually too intertwined to allow for the definition of clear-cut boundaries.
[Somm2001] also points out that this is not an exclusive classification, for
it is possible to think of risks that may affect the project as well as the
product and the organisation.

In the following, we will therefore not use the above classification.
Instead, we will give an example list of possible categories to classify the
risks in chapter 9.3.

138 9 Risk Management interface

9.2 What is Risk Management

Risk management may be seen as being a part of project management or as
being an independent project discipline in systems engineering. Risk
management will, in some form or other, usually cover the following
activities:

• identification of risks
• assessment of risks
• definition of countermeasures
• monitoring of risks

These activities together can be seen as representing a risk management
process. A simple example risk management process is shown in the
following figure 9.1, and this process will be described in detail in the
following sections.

Identification
of Risks

Assessment
of Risks

Definition of
Countermeasures

Monitoring of
Risks

Figure 9.1: Simple example risk management process

Before the risk management process can be applied, it must be tailored
to the needs of the current project and the organisation that carries out the
project. In other words, the risk management needs some preparation.

9.3 Preparing a Risk Management

For every project there should be an individual preparation of the risk
management process. One can think of many things to define before
starting a risk management process for a project at hand, but at least the
following activities should be carried out before starting the risk
management process:

 9.3 Preparing a Risk Management 139

• define which information should be documented for risks and
countermeasures

• define criteria for categorising risks and assessment of risks
• define risk management strategy

These activities set a scope for the risk management to be applied and
thus make sure that the risk management related activities of all people
involved will aim at the same direction.

The following list is a suggestion for a set of information (attributes)
that can be documented for risks:

• identifier (ID)
• description
• short name
• probability of occurrence
• impact
• reason
• relevance with respect to time
• category
• author
• person responsible
• possible countermeasures

This list is just an example and a suggestion of how to get started. It is
in no way complete.

Since risks are closely related to the corresponding countermeasures,
these too have to be defined with respect to the information that should be
gathered and documented. This definition should also take place before the
risk management process is started. For the countermeasures we also give
a typical list of valuable information (attributes):

• identifier (ID)
• kind (proactive / reactive)
• description
• estimated costs
• person responsible
• addressed risk
• probability of occurrence of risk after countermeasure was carried out
• impact of risk after countermeasure was carried out
• description of risk after countermeasure was carried out

Like the list of attributes for risks, this list of attributes for
countermeasures serves as an example and is not complete. With these two

140 9 Risk Management interface

example lists of information related to risks and countermeasures, we can
proceed with the second preparing activity as listed above, the definition of
criteria to categorise and assess risks. There are various reasons why it
may prove desireable to categorise the risks. For example, it is quite
common that there are different specialists for different fields of risk. Thus
a controller may check the available data for financial risks only, while
some engineers may check only for technical risks.

Another reason for categorising risks could be that the different kinds of
risk are weighed differently in an organisation. For example, in the
medical industry risks to the user (patient) may be weighed much more
important than risks with regard to the time schedule.

The following list gives an initial idea of how risks could be
categorised. Again, the list is not complete.

• financial risks
• risks with regard to time schedule
• technical risks
• organisational risks
• human risks
• stakeholder related risks
• process risks
• product risks

The assessment of risks helps in prioritising the risks. The risks are
evaluated and can subsequently be put into an order of significance. The
assessment of risks is usually carried out using the following two
dimensions:

• probability of occurrence
• impact

After the information that should be elicited and documented with
regard to risks and countermeasures is agreed and after the definition of
the criteria to categorise and assess risks, the third activity as listed above
can be carried out. The definition of a risk management strategy can be
given for all risks or for each individual risk.
For example, an organisation may choose to address all risks in the same
manner, or to address each individual risk in the manner that appears most
promising.

A typical list of risks management strategies is given as follows:

• risk avoidance
• risk transfer
• risk minimising

 9.4 The Risk Management process 141

• risk acceptance
• risk resolution

Risk avoidance is the strategy of making sure that the situation that
gives rise to the risk cannot occur at all. For example, risks can be avoided
by renouncing a deal or by abandoning a business area.
Risk transfer is the strategy of trying to ensure that if a detrimental
situation actually occurs, other people or organisations will have to deal
with it. A typical case of risk transfer are insurances, which get paid for
taking the risks of others. Another example for risk transfer is the attempt
to pass a risk on to a business partner or to even pass it back to the
customer. In this sense risk transfer is also a means of risk avoidance.

A risk minimising strategy sees to it that the probability of occurrence of
a risk is minimal. Examples for risk minimising are proactive
countermeasures that are applied before a risk occurs, like choosing only
skilled staff for a project or using a safety factor in all financial
calculations.

Risk acceptance is the strategy of basically trying to “live with the risk”.
Quite often, special compensations go hand in hand with that strategy. For
example, stuntmen in Hollywood movies may be paid almost as much as
the main actors for a very short shot. This is because the risk is totally with
the stuntmen and if something goes wrong, there is basically nothing that
can be done.

A risk resolution strategy aims at creating a surrounding in which the
risk no longer exists. For example, the risk of outdated development
equipment could be resolved by buying new computer hardware and
software. As sometimes a risk cannot be resolved completely but only
partially, risk resolution may be seen as a special case of risk minimising.

The above list of different risk management strategies is not complete. It
is quite common to initially start with the risk management strategy that
appears most reasonable at the beginning and later change it, according to
current needs of the projects and the available information and data.

But whatever the current strategy is, it is most important that it is
documented and known to all relevant people.

9.4 The Risk Management process

A basic risk management process can be built from the activities listed in
section 9.2. Before we go into details of each activity it is important to
understand that the risk management process, as all other processes
described in this book, is iterative.

142 9 Risk Management interface

We will therefore not have only one run through the activities. Risk
management is a process that lasts as long as the project itself, from
drawing the first draft project plans and eliciting the first requirements to
finally disposing of the developed system.

This means that risk management starts with an initial identification and
assessment of anticipated risks, possible effects and suitable
countermeasures. The risks are then monitored until new information
becomes available and new situations arise that alter the foundation for the
initial judgements. When this happens, more risks may be identified and
the risks are re-analysed, their impact on the project are re-estimated and
the countermeasures are re-defined to fit the new information.

It goes without saying that all the information produced by risk
management should be properly documented and made accessible to all
those who may be affected by these risks. In some organisations this will
give an independent risk management plan, while in others this may be a
part of the project management plan.

9.4.1 Risk identification and how Requirements Management
can support

The first activity in the risk management process as outlined above is the
identification of possible risks. There are many risks that may exist in a
wide range of businesses and thus have a universal character, for example
a tight project schedule.

However, there might also be risks that are very subtle and thus harder
to spot. An example of this is the risk that a system to be developed will be
outdated by the time it is ready to use. Although for many developments
this is probably a very small risk, for some industries this risk is quite real.
Consider for example the automobile industry, which will be faced with
the necessity to change from internal combustion engines to electric or fuel
cell or other engines independent of gasoline in the near future. In this
situation, there will come a time when it will no longer pay off to start any
new developments related to combustion engines, and it will be interesting
to see when this point of time will be reached or will be thought to have
been reached.

The identification of risks can be facilitated in a number of different
ways:

• brainstorming sessions
• personal experience
• standardised lists of common risks
• …

 9.4 The Risk Management process 143

The results of using brainstorming sessions, personal experience and the
like are very much dependent on individual skills such as imagination and
memory. This means that if these skills are not very prominent amongst
the project members, the risk identification may not be very satisfying. On
the other hand, a few talented people may identify more risks than were
ever anticipated before within an organisation. In this connection it is
interesting to note that people who are not working in the field or are not
specialists might be able to provide most valuable input to risk
identification, for their views are not clouded by real or would-be
experience and cynicism.

Requirements management can support these subjective methods by
providing the data created in the requirements engineering process. Like
many other kinds of information, information on risks can be elicited with
the methods as described in detail in chapter 4. For example, (mis-) use
cases and (worst case) scenarios may be used to try and anticipate very
different situations that can cause the project to fail, see figure 9.2.

Elevator

push "Stop" button

User
activate emergency brakes

smoke during ride

use elevator

call elevator

exit elevator

ride to target floor

enter elevator block light barrier

wait for door to close

get caught in the gap

wait for door to open

Figure 9.2: Example misuse case and accident scenario

It is important to note that usually information on possible risks – and
many other valuable information – inevitably emerges in the course of
requirements engineering and elicitation, even if this information is not
explicitly being asked for. It is therefore mandatory to document all these
pieces of information independent of whether these are directly related to
the topic at hand or not. Our experience shows that all these bits of

144 9 Risk Management interface

information will prove valuable sometime, and as they are offered on a
plate, they should not be rejected. In this connection it may be interesting
to the reader that quite frequently a requirements elicitation session will
give only little information on what was defined as the actual topic, but a
lot of otherwise interesting information. Thus it may happen that although
many elicitation sessions might initially be called unsuccessful in a project,
all necessary information is collected and documented, and the project
turns out to be quite successful.

Another kind of facilitating elicitation of risks relies more on the
documented and trustworthy experience of the organisation than on
personal experience and imagination. Thus one of the most obvious
sources for risk identification will be the lists of risks identified by past
projects. Some of these risks will turn out to be similar and to occur in the
majority of the relevant past projects. These can form the core of checklists
and standards to be used within an organisation and thus this information
is related to and valuable for the organisation’s quality management as
described in chapter 6.7.

The following list gives a number of risks that typically threaten every
project:

• budget overshoot
• time schedule overshoot
• wrong stakeholders
• wrong or outdated stakeholder requirements
• changing project scope
• inexperienced project staff
• inexperienced project management
• unrealistic expectations
• faulty or too little communication
• missing development equipment
• safety critical product
• lacking resources
• project goals unknown to staff

The above list could be extended infinitely, but the example may suffice
to give an impression of what a template risk list could look like in a
specific organisation.

If risks are covered by requirements management, the information from
past projects is readily available to all other projects and can be shared
throughout the organisation. If risks are handled independent from
requirements, there may still be some link between the requirements and
the information on risks, and this link can be provided by requirements

 9.4 The Risk Management process 145

management so that the information is still accessible. These two situations
are depicted in figure 9.3.

Requirements

R-
701

There must be
a stop button.

PR-
18

ID Ref.Text

R-
513

There must be
a run bu

SR

Project Risks

PR-
18

Users may get
caught and in-
jured by robot.

R-
701

ID Ref.Text

Scope of requirements
management

Requirements

R-
701

There must be
a stop button.

PR-
18

ID Ref.Text

R-
513

There must be
a run bu

SR

Project Risks

PR-
18

Users may get
caught and in-
jured by robot.

R-
701

ID Ref.Text

Scope of requirements
management

Risk management within
requirements management

Risk management outside
requirements management

Figure 9.3: Availability of risk information
in various project constellations

If the risks are not covered by requirements management, if there is no
link between the requirements and the risks, and if the information on risks
from old projects can not be accessed, the information must be considered
lost for any following projects.

Another important contribution of requirements management to risk
identification is to provide the data and information stemming from the
requirements definition process. It was shown in the previous chapters that
requirements are complete only if they have documented attributes. Thus
typical attributes for requirements are “owner”, “accepted”,
“implementation status” and so on.

To make the information related to the requirements most valuable for
the risk management, it is recommended to define a corresponding set of
attributes for the requirements engineering process as early as possible.
The following is a list of typical attributes for requirements that may
provide valuable information for risk management:

• volatility: this indicates how often a requirement changes; repeated
changes may indicate that there is a lot of discussion regarding a
requirement and this can indicate a project “hot spot” that should be
monitored

146 9 Risk Management interface

• complexity: this indicates how complex the requirement is believed to
be to implement; the more complex a requirement is to implement, the
higher the risk that the implementation will not be successful

• cost: this indicates how costly a requirement is believed to be to
implement; the higher the anticipated costs to implement a requirement,
the higher the risk that this requirement may blow the project budget;
costs may be closely related to complexity, but not necessarily so; note
that in this connection, it is also recommended to answer the question
how much it could cost the organisation not to implement a certain
requirement

• importance: this indicates how important it is to have a requirement
implemented; the higher the importance, the higher the risk that the
product is not of high quality or cannot be used at all if the
implementation is not successful

From the above list it can be seen that some attributes that provide very
useful information for risk management are not exclusively risk related.
For example, costs and priority (importance and urgency) will belong to a
standard set of attributes in many organisations.

Like every other activity of requirements management, the definition of
the attributes to support risk management should be carried out with
common sense. This means that only one risk attribute may not suffice for
monitoring and managing risks in connection with requirements. By
contrast, five or even ten risk attributes are very likely not to be filled in by
the developers as this would take too much time.

If all the requirements are risk attributed this will give a good overview
of possible project risks in connection with the requirements. Note
however that there may be more risks that have their origin outside the
product requirements. Examples of such risks that may not be covered by
requirements management are availability of key staff and product
competition (unless of course, the key staff availability requirement or the
competition requirement has been documented).

Apart from risk attributes, requirements management directly offers the
development information. Thus the requirements text itself can be checked
for any possible risks. This check should be carried out using the list with
different kinds of risk that was introduced in section 9.3 and which has to
be agreed on beforehand.

Once the kinds of risk that should be addressed are agreed, developers
and other experienced staff can start to work through the requirements. An
example of the result of such a check is given in the following figure 9.4,
where it is assumed that the example list of different kinds of risks from
section 9.3 was used.

 9.4 The Risk Management process 147

Requirements

R-
95

There must be a wireless LAN
available inside each public
transport bus.

financial
user safety

ID RiskText

R-
43 Each bus must have four

Figure 9.4: Example result of risk check of requirements

In addition to the data stored in requirements attributes, requirements
management provides the information on the dependencies between the
requirements and between requirements and pieces of information from the
other systems engineering processes, such as project management, change
management, verification and validation and so on. To this end
requirements management links all the related pieces of information, so
that all information can be reached from any point in the link chain.

For example, the information links between some requirements and
change management information may indicate that the implementation of
one change request would modify a number of key requirements. This
information is most valuable to risk management, for there are a number of
potential risks associated with this situation:

• the system may no longer behave as expected by the customer
• the system may not be as efficient as before
• the system may not work at all
• the implementation may not be successful
• the implementation may blow the change request budget
• …

All these aspects (and many more) would usually have to be considered
in connection with a change request, but this demands that the necessary
information is available.

A second example may serve to illustrate the value of the information
links between the requirements and the validation and verification process
from the point of view of risk management. Assuming that the information
links show that some key requirements may be very difficult to verify, this
means that:

• it may be impossible to prove that the system functions correctly
• it may be unknown whether the customer will accept the system
• the budget planned for validation and verification may be overdrawn

148 9 Risk Management interface

• the system may wrongly be verified to behave properly (a false positive)
• …

These examples will have made clear how much information and how
much data risk management can extract if requirements management
makes sure that all related information is mutually linked and accessible. If
this is not the case and if thus the various bits of information cannot be
accessed, risk management (and all other systems engineering processes)
will consequently be of lesser quality or less reliable.

9.4.2 Risk assessment and how Requirements Management
can support

The assessment of the identified risks is sometimes closely related to their
identification, but it is usually recommended to separate these two
activities.

If this is not the case some risks may be dismissed immediately after
identification, assuming that they are very unlikely to occur or to have only
little impact on the project. There is then the danger of loosing track of
such risks.

It is therefore better to list all identified risks in one document, together
with the result of the assessment. It should not be allowed for anyone to
delete an identified risk from the list only because it is assumed to be
negligible at some point in time.

During the assessment the identified risks are analysed one by one and
the possibility of their occurrence and their possible impact on the project
are evaluated. This activity will usually be carried out by experienced staff
together with the project manager and risk manager. There may also be
other specialists and members of the organisation’s senior management
present.

The following figure 9.5 gives an example of how risks can be
visualised in a risk graph.

With a graphical representation as given in figure 9.5, it is easy to
quickly recognise whether a risk is acceptable or unacceptable. All risks
that are in the upper right corner of the graph are critical, whereas risks in
the lower left corner are less threatening.

A similar graphical representation of risks is given in figure 9.6 as
follows. The main difference between the risk graphs in figures 9.5 and 9.6
is the fact that in figure 9.5, the risks are discretely categorised, and the
number of categories along each axis can be tailored. In figure 9.6, the
risks can be placed everywhere within the limits of the graph and are thus
continuously categorised.

 9.4 The Risk Management process 149

Pr
ob

ab
ili

ty
of

 O
cc

ur
re

nc
e

Impact

sometimes

remotely
thinkable

unlikely

unthinkable

catastrophiccriticalsmall

probable

often

negligible

acceptable

ALARP*

unacceptable

*ALARP = As Low As
Reasonably Practicable

Figure 9.5: Risk graph for visualising risks (source: wikipedia)

Pr
ob

ab
ili

ty
of

O
cc

ur
re

nc
e

Impact

small

large

high

small

Figure 9.6: Another graphical representation of risks

It must be noted that although the assessment will aim at making
judgements and predictions that are as precise as possible, the result is
nonetheless arbitrary. For important and large projects some organisations
therefore choose to have the list of risks assessed by two independent
teams, and the list is accepted only if the results of these two independent
assessments are similar.

Requirements management can support the risk assessment by providing
risk related information in connection with the requirements. As was
described above, a set of attributes may serve to categorise the
requirements from the point of view of possible risks. The identified risks
are linked with the requirements, and it is then possible to get from the
risks back to single requirements and vice versa. Thus for example the
customer acceptance of the system to be developed may depend on only a
handful of key requirements (importance is topmost) that must be
concentrated on to make the project successful.

150 9 Risk Management interface

The information links provided by requirements management and
mentioned in the previous section are equally important. Thus in order to
properly assess the possible impacts of a risk it will be necessary to follow
all the links and collect all connected information. After this, all available
information is put together to form the basis for the assessment. During
this activity, new risks may be discovered or new aspects may change the
assessment of already identified risks. As was said before, the assessment
and the identification of risks are closely related activities, and all
information extracted in the course of either activity should be documented
wherever it is suitable.

The following figure 9.7 gives an idea of how risk related information
can be traced back using the various links provided by requirements
management.

System Tests

ST-
103

The buttons
must be ECE 7
instead of ECE
192.

DR-
59

ID Ref.Text

User Req.

UR-
701

There must be
a stop button.

SR-18
PR-9

ID Ref.Text

UR-
513

There must be
a run bu

SR

System Req.

SR-
18

There must be
stop buttons
on each side.

CR-701
DR-59
ST-103

ID Ref.Text

SR- There m

Design Req.

DR-
59

Three buttons
conforming to
ECE 192 must
be install

SR-18
DT-10

ID Ref.Text

Project Risks

PR-
9

Users may get
caught and in-
jured by robot.

UR-
701

ID Ref.Text

Change Requests

CR-
34

The buttons
must be ECE 7
instead of ECE
192.

DR-
59

ID Ref.Text

Figure 9.7: Tracing back risk related information using links

From the example in figure 9.7 it can be seen how tracing back links
between different collections of data can reveal more information than
would otherwise be available. Assuming that a risk was identified in
connection with user requirement UR-701, the existing link chains can be
run down via the system requirements (SR-18) and design requirements
(DR-69). Here it will be seen that there already exist system tests (ST-103)
and change requests (CR-34) that are linked to the system requirements
and design requirements. The system tests and change requests may have
more links to other requirements, which is indicated with the dashed links.

 9.4 The Risk Management process 151

Thus it may turn out that although the risk was originally only identified
in connection with user requirement UR-701, many more user
requirements and system requirements and design requirements are
affected because they are not only linked directly but also indirectly via
tests and change requests.

Without requirements management, information on risks related to the
requirements is usually much harder or even impossible to extract.
Outdated links may present an incorrect picture of the mutual
dependencies, and old versions of requirements can lead to wrong
judgements in connection with risks.

After the assessment, the risks can be ordered according to their
possibility and impact. It must then be decided how to further proceed. An
organisation may have a standard demanding that the first say, 15 risks
must be addressed by defining possible countermeasures. In other
organisations, all the risks that may threaten the whole project – sometimes
called catastrophic risks – have to be addressed with a plan.

If there is no standard the project manager must decide which risks to
prepare for with some plan and which risks to neglect. As the assessment
is repeatedly carried out, the judgements may change throughout the
course of the project and the risks that are planned for may consequently
change, too.

9.4.3 Definition of countermeasures and how Requirements
Management can support

The first two activities in the risk management process cycle are the
identification and assessment of the possible risks in a dedicated risks
document or in the project management plan. After that, the next step is
making up one’s mind as to how these risks could possibly be addressed.

Because it is usually not possible to devise a management strategy for
all risks, it was suggested before that the risks be prioritised and ordered.
Similar to the assessment, the definition of countermeasures is then carried
out for each individual risk whose possible impact on the project is
estimated to be greater than some defined limit. It is noted that the
relationship between risks and countermeasures is usually n:m.

This means that one risk may need more than one countermeasure to
deal with, while one countermeasure may address more than one risk at the
same time.

As the risks are best classified in view of probability of occurrence and
impact on the project, possible countermeasures can, in principle, aim at
minimising either of these two risk attributes. Thus a risk minimising

152 9 Risk Management interface

strategy may minimise the possibility of occurrence, or the possible impact
on the project, or both.

In practice, risks management plans are often of the latter kind, trying to
minimise both the possibility of occurrence and the potential impact on the
project. If none of the two risk attributes can significantly be minimised, a
strategy may still try to think of procedures for the very worst case.

Clearly a risk management plan or strategy cannot be established using
ready recipes that fit every situation. Like many other activities in the
various systems engineering disciplines, risk management heavily relies on
the skills and experience of the people involved.

The information provided by requirements management can support the
definition of countermeasures. Following all links related to a risk one can
identify a certain scope of that risk. This means that it is possible to tell in
detail which aspects or parts of the system are affected by the risk and
which are not. This analysis will also highlight those parts for which
countermeasures will be effective.

The sum of all parts or aspects for which any countermeasures would be
effective then represent the actual potential for risk management and
minimisation. For the rest, not much can be done save analysing the worst
case impact and hoping that it may not happen. The parts that can be
addressed with countermeasures can further be prioritised and balanced in
view of the associated efforts and benefits. This approach can optimise the
countermeasures if there are boundary conditions in terms of budget and
resources. In reality, this is usually the case.

The above descriptions may appear to be somewhat theoretical, and an
example will shed more light on the various aspects of what has been said.
Consider for example the risk that for some car electronic control unit the
transformer may no longer be available in two years time. This risk may
have been identified by using a company standard list of risks, or for
example by analysing the entries in a special requirements attribute, or by
analysing the role of the stakeholders identified during requirements
development, with the transformer manufacturer being one of the
stakeholders.

Using the information links between the project management plan and
the requirements data provided by requirements management it is known
that say, at least 100,000 electronic control units must be sold to make the
project financially successful. The risk of not being able to get the
transformers in the near future is therefore estimated to be significant, and
possible countermeasures shall be identified.

Collecting all linked information it is assumed that this risk can be
addressed in the following ways:

• C1: changing to another transformer type

 9.4 The Risk Management process 153

• C2: buying so many transformers that they will last for at least 100,000
units

There may be many more possible countermeasures, but we assume that
these are the most promising and realistic as found by the foregoing risk
analyses and assessments. It is seen that both countermeasures would
completely resolve the identified risk, and no ”black spots” would remain.

Due to limited budgets it may not be possible to realise countermeasure
C2. If project management decides to go for C1 in an early stage, the
development can immediately be carried out taking this risk into account.
Using the information provided by requirements management quickly
reveals that the transfomer has an interface to the car’s electric board net
and to the electronic control circuit. It also has a geometrical interface to
the housing and the electronic board in terms of physical dimensions.

With all this information it is now possible to plan and develop the
control unit so that the original transformer and some alternative can both
be used. The reason why the alternative may not immediately be used
could for example be that the alternative is more expensive, and thus the
original transformer should be used as long as possible. The only thing that
is left to do is monitoring the risk. In the described situation this essentially
means keeping contact to the transformer manufacturer and observing the
deliveries. As soon as the transformer is no longer available, purchase and
production must switch to the identified alternative.

9.4.4 Monitoring risks and how Requirements Management
can support

The last activity in the risk management process is the monitoring of the
risks. To be more precise, it is not the last activity but the one that is
constantly carried out, while the other three process activities may be
executed only periodically and in their logical order.

In a way, monitoring the risks is very similar to controlling a technical
system of a certain degree of complexity. Taking for example a power
plant, monitoring could mean to watch the various displays for pressure,
temperature, voltage and so on with a defined frequency. As long as the
values are within a certain range, nothing must be done save keep on
reading the indicators.

If one of the indicators starts leaving the normal range and approaches a
critical value, the power plant manuals must be taken off the shelf, and the
relevant chapters must be read. Actions must then be taken according to
the suggestions of the manuals, and it must carefully be checked if these
actions can resolve the danger. If so, the operator can go back to business
“as usual”. If not, further actions must be taken and their result checked

154 9 Risk Management interface

again. In principle, this cycle goes on until either the critical situation can
be brought under control or until some catastrophe happens.

As a catastrophe is clearly not wanted in connection with a power plant,
the usual security standards are very strict (hopefully!), leading quickly to
the plant being switched off before some situation may occur that cannot
easily be controlled. This is probably the reason why throughout the last
few years there were a number of incidents where a power plant was
switched off, even though according to the reports the plants were far from
any really critical or dangerous state.

We choose the analogy of a power plant here, for there are some details
that should not be missed. While the power plant has indicators, risk
management has metrics. Metrics are dealt with in detail in another
chapter, but it is important here to note that these metrics cannot naturally
be derived.

Although there are some standard metrics or indicators, such as budget
used versus budget still available, more specific risk indicators will usually
be project specific. We stress this point to make clear that the quality of the
risk management will heavily depend on the indicators or metrics chosen
to represent the state of the project in terms of risk.

Just as the power plant operator might not read the voltage meter for
checking the pressure, risk management estimates may be wrong if for
example the “percentage of requirements implemented” metric is taken as
an indicator for how much budget should approximately be already used.
Let us assume for example that half of the requirements are already
implemented and half of the budget is already used. If the significantly
more complex half of the requirements is already implemented, risk
management may miss a chance of shifting priorities to make the project
more successful and quicker. If the significantly easier half of the
requirements is implemented, risk management may fail to realise that
there is a severe risk of not being able to implement the other half of the
requirements with the remaining half of the budget.

In such a situation it may be better to use a metric giving the number of
requirements already implemented and weighted with some estimated
implementation effort. Such metrics and statistics are easily created with
the information provided by requirements management.

9.5 Summary

This chapter deals with the interface between requirements management
and risk management. Risk management is a cycle of activities constantly
carried out throughout a project. The process activities are basically the

 9.5 Summary 155

identification of risks, the assessment of risks, the definition of
countermeasures and the monitoring of risks.

The identification of risks is facilitated using checklists, predecessor
project risk management documents and the integrated information
provided by requirements management. This is a critical activity, for risks
that are not discovered cannot be taken into account.

After the risks are identified, they are usually prioritised or weighted in
terms of probability of occurrence and possible impact on the project. This
is because normally not all risks can be addressed with a suitable plan due
to budget limits. It may thus be decided to only take the ten top risks into
account, or all risks that are assessed to be above some critical level.

After the risks that are further dealt with are defined, possible
countermeasures are analysed and plans to address the occurrence of a
risks are developed. Countermeasures may aim at minimising the
probability of occurrence, or the impact on the project, or both.

Finally, the identified risks are monitored to check if the developed
emergency plans must be carried out. While the identification and
prioritisation of risks and the development of countermeasures may be
carried out with a certain frequency and in this order, the monitoring is
carried out constantly and in parallel to this.

10 Test Management (Validation
and Verification) interface

Validation and verification are two of the most critical activities when
developing a product. These names are given to the activities which make
sure that what is being developed actually meets the customers’
expectations. They are the core activities of test management. Hence
validation and verification significantly contribute to ensuring the quality
of the product.

As the requirements are usually the legal basis of a contract between a
supplier and its customer, validation and verification check whether the
contract has been fulfilled.

10.1 What are Validation and Verification?

There is a difference between validation and verification as follows:
validation checks that what is being developed meets the needs of the
customer that is paying for the product; verification checks that the product
behaves as specified. This difference is made clear in [Boeh1979], using
these two questions:

• “Are we building the right thing?” (Validation)
• “Are we building the thing right?” (Verification)

From these definitions it is seen that although validation and verification
are closely related and intertwined, they are not the same. While
verification tests a system against system requirements or design,
validation tests a system against customer (or user) requirements to show
the system can fulfil its aims; that is that the system can be used as
intended.

158 10 Test Management (Validation and Verification) interface

10.2 The Validation and Verification planning process

Verification and validation must explicitly be planned for as early as
possible. This is because usually, testing will need some preparation before
it can be carried out.

For example, test environment hardware and software may be necessary
to test a certain system. If these are not organised in due time, this may
cause significant deadwood and delay in the project management schedule.
If, for instance, testing requires use of a particular deep water harbour, this
may have to be booked years in advance. Some testing environments are
every bit as complicated to build as the system to be tested.

Also, tests may imply a significant risk from a number of different
viewpoints. For example, some key requirements may be very complex to
verify, and there is a risk that the customer cannot be convinced that his
key requirements were correctly implemented. Some requirements may
need a significant part of the resources and / or budget to verify, and this
implies the risk that if the verification is carried out properly, the project
may be delayed or the budget overdrawn. Note that in some projects with
new technology or similar challenges, validation and verification may take
up to half the total project budget.

Therefore tests should be specified as early as possible. The document
that contains all the intended tests, test procedures, expected results and so
on is usually called the test specification. The tests specification can be
written even while the requirements are still being elicited.

The validation and verification planning process is iterative, as are all
other processes in connection with requirements management.

Define Test Scope Write Tests Allocate Resources

Figure 10.1: Simple example test management process

It was shown in the previous chapters that requirements are usually
specified on different levels of abstraction or granularity, starting with the
most abstract customer (or user) requirements and ending with the most
detailed implementation requirements.

 10.2 The Validation and Verification planning process 159

Correspondingly, tests have to be planned for each level of
requirements. This relation is usually pictured with the well known V-
model.

User Requirements

Specification of
System Tests

Specification of
Acceptance Tests

System
Requirements

Subsystem
Requirements

Specification of
Subsystem Tests

Time Level of Abstraction

Figure 10.2: One example of the V-model

It is noted that in the above figure, the time axis is vertical from top to
bottom, not from left to right. Hence the tests on each level of abstraction
are planned for in parallel to the specification of the requirements on this
level. On each of the various levels of abstraction, the validation and
verification planning process shown further above is repeatedly executed.

However, the validation and verification planning should not only cover
the writing of a test specification. A complete test plan will also make sure
for example that company standards are met.

This may include the buying and application of standardised test
environments, checking that company-wide (test) quality standards are
conformed to and so on.

Also, a test plan will contain a test schedule that can be linked to the
project management schedule. This will give an overview of the
anticipated time consumption and allows for integrated project planning
and scheduling.

160 10 Test Management (Validation and Verification) interface

10.3 The role of Requirements Management in Validation
and Verification

Validation and verification is definitely one of the most prominent
interfaces of requirements management. It was said before that verification
and validation will be carried out against the requirements.

To be able to verify a product, a number of questions need to be
answered beforehand. The most important of these are:

• what must be verified?
• how must it be verified?
• who will verify it?
• when must it be verified?
• cost of the verification?
• time consumption of the verification?

A functioning requirements management will help answering each of
these questions, as the following sections describe in more detail.

10.3.1 Requirements Management supports in defining the test
scope

The question “What must be verified?” is identical to the question “Which
requirements must be tested against?”. This in turn is identical to defining
the scope for the verification process.

Generally, as verification checks a product’s conformance to its
specification, all existing requirements are candidates for testing.
However, this demands that the requirements be up to date and that the
specification does not contain old or wrong information. Requirements
management, being the interface to all the other systems engineering
disciplines, makes sure that all relevant information created in other
processes is linked to the requirements.

As will be seen in chapter 11 on change management, requirements
inevitably change throughout the course of a project and are not static.
Thus if requirements management does not make sure that the information
on changes is fed back to the requirements, the original requirements
specification will sooner or later be outdated. Hence any test specification
that relates to such an outdated set of requirements will also become
obsolete. If the question “What must be tested?” is then answered with
such an outdated test specification, the answer will be incorrect, leading to
wrong assumptions regarding the project management.

 10.3 The role of Requirements Management in Validation and Verification 161

Another important aspect of “What must be verified?” is configuration
management. Only requirements management integrates the configuration
management information with the requirements. Even if the requirements
are up to date and correct, it may not be possible to extract the correct
information for the test management without the information on the
various planned versions and configurations. Consider the following
figure.

Time

vu1 vu2 vu3 ...

vs1 vs2 vs3 ...

vd1 vd2 vd3 ...

vi1 vi2 vi3 ...

Figure 10.3: The problem of different existing versions of requirements

The above figure shows how during the requirements engineering
process, the requirements are developed step by step throughout the course
of the project on each level of abstraction. In parallel, configuration
management will make a so-called “freeze” of the requirements at certain
points in time. These freezes are basically a snapshot of the requirements
on one level of abstraction and as of a certain date.

The figure shows how one initial set of user requirements (vu1) will be
further developed (vu2, vu3, …) and at the same time will be derived to
give system requirements (vs1), design requirements (vd1) and finally
requirements on the implementation level (vi1).

By the time a first prototype of the product can be tested against the
requirements on implementation level (vi1), the requirements on the higher
levels of abstraction were further developed (vu2, vu3, …). This means
that the tests on implementation level must usually be carried out against
requirements that do not represent the current status of the user
requirements.

162 10 Test Management (Validation and Verification) interface

If the test management has no configuration management information, it
must rely on the current version of the requirements to test the system
against, since this is the only version that is momentarily accessible. The
figure shows that in this case, test management may test the prototype in
version (vi1) against the user requirements in version (vu3), which would
most probably lead to incorrect results. If requirements management links
the configuration management information to the requirements, test
management can easily tell against which version of the requirements a
certain version of the product must be tested.

vu2

vu3

vs1

vs2

vs3

vd1

vd2

vd3

vi1

vi2

vi3

vu1

Configuration A
Configuration B
Configuration C

Figure 10.4: Configuration management for various requirements versions

It was said before that ideally, a product is tested against every single
documented requirement. In practice however, it may not be possible or
necessary to test against each single requirement on each level of
abstraction. It often happens that there are no resources or no budget to test
every individual requirement, and in this case requirements management
can provide valuable information by making the requirements information
accessible to test management. It is easy for a requirements engineer to
suggest that all requirements must be tested against; but it is a skill of an
experienced tester to know when to stop.

There are a number of attributes that are usually administered together
with the requirements and that may help prioritising requirements for
testing:

• priority
• complexity
• cost

 10.3 The role of Requirements Management in Validation and Verification 163

• resources
• …

In requirements management & engineering we discourage use of the
word priority without definition; importance, urgency, both? Which do
you suppose we mean here? When documenting attributes be sure that
you and everyone else understands what is intended. Attributes have to be
unambiguous.

If resources or budget are tight, then obviously the project manager or
test manager would look for requirements that have low importance but are
relatively complex or costly or resources consuming to test. Such
requirements would represent good candidates for being neglected for
testing.

Note however that as with many other aspects described in this book,
requirements management will only support in collecting information and
providing a basis for decisions – the decision itself is always with the
respective people. Thus although a requirement may be judged to be very
low importance, but very complex, costly and resources consuming to test,
it may still be decided to go ahead with testing. One reason for example
could be that the organisation developing the product uses a new
technology to implement this special requirement, and wanting to gather
experience it must check on the results of using that new technology for
the first time.

In principle, all attribute information administered with requirements
management may prove helpful when structuring or prioritising
requirements for tests. Keep in mind however that too many attributes will
be hard or impossible to administer, and a dedicated test management
attribute for requirements may be superfluous.

A second important contribution of requirements management to
defining the test scope is the validation of the requirements. Here,
validating requirements means checking whether the specified customer or
user requirements really represent what the customer wants. This is
specific part of the analysis described in connection with the requirements
definition process.

The requirements analysis is concerned with checking that the
requirements conform to quality criteria that are project specific and must
be defined at the beginning of the project. During requirements analysis,
each individual requirement is checked on its own. We consider here
requirements validation takes the whole requirements document and tries
to demonstrate that it meets the customer’s needs.

164 10 Test Management (Validation and Verification) interface

User Req.

UR-
701

There must be
a stop button. ok

ID Qual Text

UR-
513

There must be
a run bu

Req. Quality Criteria
• understandable?
• atomic?
• structured?
• testable?
• identifiable?

2

1

Figure 10.5: Requirements analysis example

This may often turn out to be a very complex thing to do. The basic goal
is to give the customer as much information about the future system as
possible, so as to enable him to imagine the future product in its future
environment and with its future users in as much detail as possible. Hence
requirements validation will use all the various elicitation and modelling
methods described in previous chapters.

Although it may be difficult, it is nonetheless very important to validate
the requirements with regard the customer’s needs. Otherwise there may
arise a situation where the requirements are all up to date, all requirements
information is fully available to the test management and the tests are all
properly planned – only the requirements do not represent what the
customer really wants or needs. In this case, the tests would verify the
wrong requirements, and this may be seen as an incorrect scoping.

10.3.2 Requirements Management supports in documenting
the test method

After the question of what to test is answered, it must be decided how to
test against the various requirements. Requirements management can make
substantial contributions to solve this problem. Probably the easiest and
one of the most effective ways is to introduce a suitable set of attributes to
administer with the requirements. This way it is possible to document this
important information even while the requirements are being elicited and
specified. In our experience it is much easier to document such additional
information immediately together with the requirements, rather than
specifying only the requirements at one time and then try to get together all
related information sometime later. In the latter case there is the danger
that additional information which is in the developers head at the time of
specifying the requirement will be lost if the writing down of that related
information is delayed.

[HOOD2005] suggests two attributes to administer with the
requirements, and which provide valuable information for the test
management:

 10.3 The role of Requirements Management in Validation and Verification 165

• verification method
• verification criteria

The attribute verification method describes how the developers or other
specialists believe that the requirement should be verified. Typical entries
for that attribute could be one or more of the following:

• inspection
• peer reviews
• simulation
• test
• analysis
• demonstration

It is seen from the example list above that requirements can be verified
in many more ways than just classical testing. For example, using certain
formal languages for documenting requirements, it is possible to prove the
correctness or consistence of their implementation only by applying
specially developed formal methods or algorithms.

User Req.

UR-
701

There must be
a stop button.

ID Text

UR-
513

There must be
a run button.

Ver. Meth. Ver. Crit.
Visual
inspection.

Existence of at
least one button.

Visual
ins

Existence of

Figure 10.6: Application of verification method and criteria attributes

The verification method will also contain or at least point to additional
information regarding necessary verification equipment. Especially for
classical testing, extended test equipment must sometimes exist to verify
certain requirements. For example, the verification of the stiffness of an
automobile suspension will usually take place in large test benches that can
take the complete suspension and apply various loads. Such equipment
must be planned for in due time to make sure it will be available when it is
needed. The planning includes purchasing, setting up, becoming familiar
with using the equipment and so on. All information related to these
aspects should be administered as additional information for the
requirements.

The attribute verification criteria documents what the verification result
must be in order for the system to be successfully verified. Thus for
example if the verification method for checking a system against a given
software requirement was defined to be code inspection, the verification
criteria may be that three programming specialists must confirm

166 10 Test Management (Validation and Verification) interface

independently from each other that the code will actually do what it should
do. If the verification method for one or more requirements specifying the
performance of a system was chosen to be a stress test, then the
verification criteria may be that the system does not exhibit more than one
failure in one thousand test runs.

Having defined both the verification method and the verification criteria
it is possible to document the result of the verification in another
requirements attribute, or to link the requirements to this information that
may be located somewhere else.

System Tests

ST-
101

Visual inspec-
tion.

UR-701
UR-513

ID Ref.Text

ST-
24

Pushing the
button once it

UR-701

Test Res.
One button
each exists.

Machine is

User Req.

UR-
701

There must be
a stop button.

ID Text

UR-
513

There must be
a run button.

Ver. Meth. Ver. Crit.
Visual
inspection.

Existence of at
least one button.

Visual
ins

Existence of

Figure 10.7: Requirements specification linked to test specification

In practice, this relation between the test management information and
requirements information is often represented by links between the
requirements document or database and the test specification or database.
The test specification or database may then contain the test result
information.

By documenting the verification method and verification result and by
linking this information to the requirements it is possible in reality to
demonstrate the complete verification of a product regarding its
requirements. This is an enormous advantage during the development
process, and even more so for the final customer acceptance tests. The
developers can easily find out for which requirement test specifications
must be written. The requirements definition process is supported by
demonstrating that all requirements are verifiable.

Requirements management can provide the information to tell us what
percentage of a system to be developed is already successfully verified.
This gives a general project overview and thus closes the circle with
project management.

10.3.3 Requirements Management supports in documenting
who carries out the verification

In some organisations the people who are carrying out the verifications
belong to dedicated test departments. They specialise in testing against the

 10.3 The role of Requirements Management in Validation and Verification 167

various requirements and have many years of experience in verification. In
such organisation it is possible that the people who will verify against a
certain set of requirements are known to be always the same, and then
maybe no additional information is needed regarding who will carry out
the tests.

In organisations where different people verify systems against the
requirements it will normally be necessary to document which requirement
will be verified against by whom. There can then be no misunderstanding
regarding this responsibility. The information may be best documented
immediately together with the requirement. If the developer who specifies
the requirement is the one who will verify against it, then one of the usual
standard attributes such as “author” or “owner” can serve this purpose.

There are also organisations where it is not defined beforehand who will
verify a system against which requirements. Rather, the various test
personnel take the requirements one by one and verify the system against
that requirement, and a tester who is finished with some test will simply
take the next requirement that is not yet covered by one of his colleagues.
In such a situation it is most important to document who has verified
against which requirement, for it could be anyone. In this case, the
document or information data base that keeps the information on the test
results will usually also contain the name of the tester and the date of the
test. However, depending on the tool support available it is also possible to
store that information together with the requirements and only link these to
the test result information. In either case, requirements management
provides the links between the various pieces of test information, thus
ensuring that a test result can be traced back to the tester at any time.

Tester

Axel Schweiss

System Tests

ST-
101

Visual inspec-
tion.

UR-701
UR-513

ID Ref.Text

ST-
24

Pushing the
button once it

UR-701

Test Res.
One button
each exists.

Machine is

User Req.

UR-
701

There must be
a stop button.

ID Text

UR-
513

There must be
a run button.

Ver. Meth. Ver. Crit.
Visual
inspection.

Existence of at
least one button.

Visual
ins

Existence of

Tester

Axel Schweiss

Figure 10.8: Possible places to document the name of the tester

168 10 Test Management (Validation and Verification) interface

10.3.4 Requirements Management supports in defining when to
carry out verifications

It was said before that validation and verification are an essential part of a
development project. In this respect validation and verification must be
planned for like every other main project activity. The previous sections
showed how requirements management can support in defining what to
verify, how to verify and who will verify.

Another important aspect of validation and verification is the
information when the system will be checked against each single
requirement, and there are two ways to look at requirements in this
connection. The first way to schedule the verification process uses the
project management plan. This contains information on a relatively high
level of abstraction, defining when each of the main activities must start
and when they must be finished.

Thus the project management plan outlines a rough verification
scheduling and planning. However, due to its nature and its intended
readership, no detailed information about when to verify each single
requirement will usually be contained in the project management plan.

The detailed information on when to verify which requirement can
usually be found in the test management plan. The test management plan
ensures that the verification of a system, or part of a system to prove that
requirements have been satisfied, is scheduled so that the corresponding
deadlines outlined in the project management plan can be met. But how
can this information be extracted?

User Req.

UR-
701

There must be
a stop button.

SR-
18

ID Ref.Text

UR-
513

There must be
a run bu

SR

System Req.

SR-
18

There must be
stop buttons
on each side.

CR-701
DR-59

ID Ref.Text

SR- There m

Design Req.

DR-
59

Three buttons
conforming to
ECE 192 must
be install

SR-18

ID Ref.Text

Project Plan 2007

May July June AugustApril

Construction
of frame
Construction
of housing

Develop
mechanics

Develop
software

Order of implementation + test

Frame
Housing
Mech.
Softw.

Package Design Requirements

... ...

519, 112, 34, 7, 275, 96

3, 174, 187, 191, 205
24, 17, 83, 129, 143, 166
59, 45, 103, 62, 157, 116, 139

Figure 10.9: Deriving the implementation and test order from project plan

 10.3 The role of Requirements Management in Validation and Verification 169

It was seen earlier that requirements management mutually connects and
links all information created and stored in connection with the different
systems engineering disciplines. Particularly, requirements management
links and connects the requirements and associated information on the
different levels of abstraction. Examples of levels of abstraction are
system, sub-system, and component.

With this information the test management is very much simplified.
From the V-model shown further above it is seen that verification normally
begins with the requirements on the lowest and most detailed
implementation level and continues level by level until finally the
customer (or user) requirements level is reached. As was said before, on
this level the system will not only be formally verified, but the system will
be validated to demonstrate that what has been developed is actually what
the customer expects and needs.

This process can outline a rough planning as to when the requirements
on each of the different levels of abstraction must be verified against to
keep the project schedule. However, even on each single requirements
level there is usually some sequence, and this sequence must also be
defined. At this point, the information on relationships between individual
requirements provided by requirements management is most valuable.

File Edit View Insert Format Extras Options Window

File Edit View Insert Format Extras Options Window

Coordinates Entry
x y z

File Edit View Insert Format Extras Options Window

Coordinates Entry
x y z

Calculate

3 Implement and
test button

Implement and
test form2

Implement and
test user interface1

Figure 10.10: Implementation and test order for graphical user interface

170 10 Test Management (Validation and Verification) interface

By tracing the links between the requirements it is possible to tell
against which requirements the system can be verified independently of
any other requirements. Requirements of this kind of may be tested against
as soon as they are implemented and must not be specially considered.

Many requirements however are mutually dependent, and with
requirements management the nature of their interdependence can be
analysed. This way it is possible to define the sequence in which the
various requirements must be implemented to facilitate the system
verification. For example, the various functions associated with buttons
within a form on a computer display that is part of a graphical user
interface can only be tested after the graphical use interface, the form and
the buttons are implemented and successfully tested.

This may all sound rather trivial to the reader, but amazingly enough it
is not. Experience shows that quite frequently attempts are made to test a
system against requirements although the system is not ready for testing.
This is true for example if requirements management does not link
requirements information to change management information. In this case,
a system may be tested against old versions of requirements, and the new
or changed requirements may never be tested against at all.

It is also quite common that a certain test case can verify a system
against more than only one requirement. For example, a requirement
demands that the system functions properly down to a temperature of -50°;
another requirement demands that the system’s physical dimensions may
not decrease more than 0.1mm in each direction when the temperature is
lowered from room temperature to -50°. In such a situation it will often be
possible to verify both requirements at the same time as the test cases share
the same initial conditions.

It may not be possible to verify a system against both example
requirements at the same time if for example there is not enough space in
the climate chamber for both the equipment to measure the physical
dimensions and the equipment to test the proper functioning of the system
at the same time.

Ín any case, the documentation of such mutual dependencies is one of
the domains of requirements management. It is hard to imagine how the
relationship between project management plan, test cases, test equipment,
verification method, verification criteria and requirements can be
established without the information and data provided by requirements
management. Within your organisation you might call the making
available of all this information something other than requirements
management. We are concerned that you understand the importance of the
interdependence of all the systems engineering disciplines and their mutual
interfaces. If you want to call this by another name this is fine by us. The

 10.3 The role of Requirements Management in Validation and Verification 171

main thing with requirements management is not the name, the main thing
is that you do it.

10.3.5 Requirements Management supports in estimating the
costs of verification

The full set of requirements on some given level of abstraction provides a
complete representation of the system to be developed on that abstraction
level. If the requirements are properly documented, estimates can be made
regarding the anticipated costs to verify each requirement or units of
requirements.

The result of such estimations can be documented in another attribute to
go with the requirements, or it can for example be documented in the test
management plan. Requirements management ensures that wherever the
cost information is stored, all other relevant systems engineering
disciplines will be able to access this information, together with the
corresponding requirements data.

In principle, estimating the costs to verify a given set of requirements is
an arbitrary act, as it relies on personal experience and skill of the people
involved. However, the more information there is available on the subject,
the more precise the estimates will be.

Therefore, the people responsible for the cost estimates can be
significantly supported by a functioning requirements management. It will
provide information on the mutual dependencies between the requirements
and related information, thus presenting a view with a much wider scope
than if only the requirements alone were analysed to arrive at an estimate.

For example, one of the previous sections dealt with the information on
the person responsible for carrying out verification. This piece of
information may indicate that a system can only be properly verified
against a certain requirement or set of requirements by one single person
within the whole organisation, for specialist knowledge is necessary to
handle the test equipment or interpret the test results. If this specialist’s
daily rate is significantly higher than those of all the other developers or
testers, this could influence the cost estimates.

Another example of information that was suggested to be stored in
addition to the requirements was the verification method. For some
requirements, this information could for example imply that very
expensive test equipment or many specialists are necessary to be able to
verify these requirements. If this information is accessible, it will most
probably influence the cost estimates. If it is not accessible, cost estimates
are prone to error.

172 10 Test Management (Validation and Verification) interface

If no substantial information is available, requirements management
may still be able to support the cost estimation process by providing basic
data from similar predecessor projects. If the test effort and the
requirements were documented, a very simple approach could be to divide
the total known test effort by the total number of known requirements.
This will give an idea of how costly it is to verify one single requirement.

User Req.

UR-
701

There must be
a stop button.

SR-
18

ID Ref.Text

UR-
513

There must be
a run bu

SR

Test Budget

Planned

Actual

90,000

82,000

Nr. of User Req.Average Test Cost per User Req. =

117

Example:

Averag Cost =

= 701 €

Total Test Budget

82,000

Figure 10.11: Estimating costs for testing using data from earlier projects

Doing this for a number of similar or generally representative projects
may provide a good average of the cost to verify one requirement in a
given organisation. This in turn may provide a starting point for the actual
cost estimation, and a means to check if the cost estimates are reasonable
or not.

It can be seen how all these data can feed back to provide valuable
information for risk management, project management and other systems
engineering disciplines. Thus, by integrating all these different aspects,
requirements management provides the basis for all the other disciplines to
develop further.

10.3.6 Requirements Management supports in estimating the
effort needed for verification

With the information on the verification method and the verification
criteria, the effort needed to verify one given requirement can be
estimated. This estimate is valuable information in its own right, but is also
important for example to verify the project management plan.

The project management plan contains schedules for all the main project
activities, documenting when they must start and when they must be
finished in order to keep the overall time schedule. As these main activity
schedules are initially estimated and then constantly refined in the course
of the project, additional and more detailed data on any of these subjects
must immediately feed back to the project management plan.

 10.4 Summary 173

Thus for example a more detailed planning of the verification process
may reveal that the schedule initially estimated to carry out the verification
of the requirements cannot be met. It may turn out that some requirements
will take more time to verify than was anticipated. It is also possible that
there are more dependencies between the individual requirements than was
thought at the beginning, and this may lead to the effect that only relatively
few requirements can be used for verification independently of any other
requirements, while the major part must be verified in a certain sequence.
This may also blow the estimated time schedule.

Providing all the information on the requirements and their mutual
relationships, requirements management also supports in optimising the
scheduling of the requirements verification. For example, requirements
management may reveal that there are a number of different sub-sets of
requirements that can each be tested with only one or only a few test cases.
If this information is available, the test management will plan for a much
smaller number of tests than if the information were not available, and a
much smaller number of tests may indicate significantly less time to verify
a system against all requirements.

10.4 Summary

This chapter deals with requirements verification and validation. These are
the activities of checking whether a system conforms to its specification
and whether it actually meets the needs and expectations of the customer.

Like all other main project activities, verification and validation must be
properly planned for and should be a part of or linked to the project
management plan.

There are a number of different data associated with validation and
verification, and a test plan may contain some or all of the following
information: What must be verified? How must it be verified? Who will
carry out the verifcation? When can or must the system be verified against
which requirements? How much does it cost to verify the system against
requirements? How long will it take to verify the system against the
requirements?

Much more information can be thought of, and the project management
plan must document which additional information is to be administered
together with the requirements to support the test management. Do not do
this blindly, decide what makes sense and assess if the effort will be more
than the resulting benefit.

Requirements management can support in answering any of the above
example questions by integrating all selected related information from

174 10 Test Management (Validation and Verification) interface

other systems engineering disciplines and by feeding back all this
integrated information into each systems engineering process.

Like many other processes described in this book, the verification and
validation planning process is iterative. Therefore, some initial estimates
will be established to roughly plan for the validation and verification. As
the project goes on, more detailed information will emerge and become
available, and this information feeds back to the verification and validation
planning process.

11 Change Management interface

11.1 General

Change management is one of the most important aspects of requirements
engineering. The subject is closely related to other areas such as
configuration management, variant management and also project
management. Change management theory is essentially not very
complicated.

Unfortunately, in practice it is often not so easy to implement. The
following chapter explains the basics of change management, the
relationships with RM&E and also the problems of turning the theory into
practice.

11.2 Basics of Change Management

"Changes always happen in a project and at every project phase."
This is a premise that applies to almost every project. Unfortunately,

time and time again attempts are made to simply disallow changes made
after a "certain point in time". The reason for this is that changes,
particularly in later project phases, can be very uncomfortable.
Development departments in particular insist on keeping the requirements
as static as possible. During the project, project members are then
continually surprised that the above mentioned "certain point in time"
ultimately coincides with the end of the project.

A further indication of the above mentioned premise lies in the fact that,
as a rule, there is always a project manager. If no changes were allowed
after a particular point in time, there would also be no need for a project
manager after this point in time. That is to say, the project plan would exist
and everything would run like clockwork until the end of the project. One
would simply need a project planner instead of a project manager.

176 11 Change Management interface

11.3 Factors Influencing Change

The reasons for change are varied. Hence, there are factors that themselves
cannot be influenced by optimal RM&E in project analysis. These may be
for example:

• Cost or budget levels
• Resource situation (e.g. staffing levels)
• Scheduling
• Conceptual changes (system-/ architecture)
• Strategic changes in marketing and sales

There are however further factors that, with structured RM&E
methodology, reduce the risk of changes:

• Forgotten requirements
• Incorrect/contradictory requirements
• Requirements so formulated that they can be misunderstood

Reasons for changes

RM&E independent factors

• costs / budget
• scheduling

• strategy (marketing / sales)

• technical changes

RM&E dependent factors

• implementation problems
• incorrect requirements

• ambiguous requirements

Figure 11.1: Reasons for change

For example, if cost or budget levels are reduced or, what happens much
less frequently, the budget is increased, this naturally has an effect on the
project implementation. It can equally happen that the project resources are
increased or reduced. Relatively often, one can observe a project milestone
being brought forward, or put back.

In the course of the development, the development department can
realise that an architectural concept or use of new technology is not
sustainable, and therefore a general redesign is necessary.

The market situation of the product to be developed can also
fundamentally change. For example, a competitor launches a more
efficient product first. This can make it necessary to implement additional
functionality, or to launch one's own product earlier, so as not to lose
market share.

 11.4 Number of Changes during Development 177

Good requirements management & engineering only has limited effect
on the above mentioned factors.

There are, however, factors that generate changes during the project that
can influence well-structured RM&E.

Changes can be generated because the specifications have not been
defined carefully enough. Requirements may unfortunately be, among
other things, contradictory, not testable, incomplete, not explicit enough,
or open to misunderstanding.

Specifically in this case, structured RM&E helps to reduce the number
of changes in the later development phases.

11.4 Number of Changes during Development

Irrespective of the previously mentioned premise, that changes will occur
during the entire project, one goal must be to reduce the negative
influences which generate changes.

This is because implementing a large number of necessary changes
towards the end of the project actually damages the success of the project.
In this respect, it is very problematic for a development manager when
many changes have to be implemented towards the end of a project.
Unfortunately, organisations are still putting too little effort into producing
good, well thought through specifications.

For the most part, at the start of a project, customer specifications are
copied from a previous product and adapted or extended in a makeshift
way, to as to be able to start a request for tender as soon as possible. The
inconsistencies and mistakes will then only be recognised towards the end
of the project - at a time when the costs of rectifying them are greatest!

Although there can be no generalisation about what the scale of changes
during a project should be, there are however levels that can become
critical to a project.

Here, we mean changes to the specification and not to the ultimate
system being developed. Good change management requires that changes
are first of all documented. Relying on two or more people sharing a
common recolection of a telephone conversation is not enough.

If only a few changes are specified at the beginning of the project, this
might indicate that the definition of requirements was uncharacteristically
successful. Or more commonly this can indicate that the elicitation of the
requirements, analysis and requirements modelling has not been carried
out carefully enough. Mistakes, gaps and inconsistencies will then first be
recognised during implementation and above all when testing. This often

178 11 Change Management interface

considerably increases the number of changes necessary towards the end
of the project where the repercussions are most extreme.

critical

N
um

be
ro

f c
ha

ng
es

ideal

Project start Project end

Figure 11.2: Number of changes during the course of a project

It is also important to note that, even in a project with exemplary
elicitation, analysis, modelling and reviews, the number of changes can
suddenly increase considerably: for example, if the resources or budget
situation changes dramatically, or a solution proves not to be feasible.

In order to prevent misunderstandings and despite appearing to argue in
favour of a "waterfall model": It is necessary and important to be clear
about the scope of the system to be developed at the start of the project.
The amount of effort invested in a "good" specification is definitely
worthwhile, because correcting inconsistencies, errors or ambiguities is
cheapest when they are discovered and rectified at the start of the project,
i.e. when there's nothing more than documentation available.

Nevertheless, based on findings and experience during the project and
the above mentioned factors, changes will continue to occur

11.5 Two Phases of Change Management:
Informing and Approval-based

How do I now deal with changes during the project? As already shown
above, most changes at the start of a project are to specifications. This is
normal, because the actual process of producing the specification takes
place here. The author of a specification first of all gets a understanding of
the other stakeholders' expectations.

 11.5 Two Phases of Change Management: Informing and Approval-based 179

Informing Change Management - Approving Change Management

Approving

• contract exists
• changes less frequent

• change requests exist

• formal decision necessary

• changes have large impact
(schedule / costs / quality)

Informing

• no contract
• frequent changes

• no change requests

• no formal decision necessary

• project just started

Figure 11.3: Differemces between informing
and approving Change Managment

This phase is characterised by a lot of work on the requirements
document and therefore the number of changes and adjustments is high.
After some time, a consolidation phase should occur, in which decisions
are taken with regard to what the system to be developed must provide.
Lastly, an agreement is made with the supplier/contractor. From then on,
the number of changes should no longer be so high. From this phase
onwards, approval-based change management applies.

critical

N
um

be
ro

f c
ha

ng
es

ideal

Project start Project endAgreement

Informing

Change Management

Approving

Change Management

Figure 11.4: Two phases of Change Managment

11.5.1 Informing Change Management

In this phase there is no sense in defining a bureaucratic and elaborate
process in which every change is followed by a large number of actions.

180 11 Change Management interface

Here the other stakeholders should have sufficient trust in the author, so
that he or she has sole responsibility for entering changes.

When, in the author's eyes, the specification has reached a relatively
static state, this can be improved and finally approved through a review
cycle with other stakeholders. This is also the point in time when the
supplier/contactor responds to the (customer) specification. As a rule, the
supplier conducts an analysis of the customer requirements, in which he
checks the contents and the authors have the opportunity to further
substantiate these specifications.

This is of course still in the informing change management phase. At the
same time, the contractor produces a specification in which he submits an
offer to the customer in respect of the customer specifications.
Adjustments to both customer and supplier specifications are made during
the negotiations.

Project management personnel are also heavily involved during this
phase, because, at the very least, rough milestone planning and cost
estimates should be made here to establish sound project planning. Once
the customer and supplier are agreed on the scope (documented in the
customer and supplier specifications), the remuneration and schedule,
informing change management is at an end and release-based change
management has begun.

Many people often regard this point as the start of the actual project.
The danger of this perspective is that hardly any time and resources are
made available for important analysis and documenting supplier and
customer requirements. Through this approach, the quality of
documentation in respect of supplier and customer requirements is
accordingly bad. The result: badly calculated offers and vague project
plans. The project manager gets to feel this neglect at the end of a project,
when the costs of changes are very high and deadlines are not met.

It is important to allow sufficient time for thorough elicitation, analysis
and documentation of supplier and customer specifications, i.e. also plan
for the informatory change management phase.

11.5.2 Approving Change Management

Normally at a certain point in time, the customer and supplier will agree
what the system to be developed should provide and what it will cost. This
point in time is the completion of an agreement/ contract between both
parties. Because others are relying on the published specifications, ad-hoch
changes are no longer acceptable.

Often, the fact that changes are necessary after this point in time is
suppressed. Therefore there is also no agreement about how to proceed in

 11.5 Two Phases of Change Management: Informing and Approval-based 181

this case. It should be clear to each party that changes after signing the
contract are legitimate. There should be an agreed process of dealing with
changes.

Incidentally, this customer-supplier relationship does not always have to
be between two organisations. It can also be between two departments of
the same organisation e.g. between the product management and
development departments.

Thus a process should be agreed, which deals with changes in a
structured way. Of course, this is not possible without a certain minimum
level of bureaucracy. The effort required is kept to a reasonable level when
no large numbers of changes have to be dealt. Here the quality of the
elicitation, analysis and specification in the informing change management
phase will prove itself.

The state of the specification is adhered to in the agreement. Each
change, irrespective of from which side it comes, is now no longer
immediately entered in the specification, as was the case with informing
change management. The change is initially documented as a change
request.

Registration of
change request

Analysis of
change request

Decision on
implementation

Figure 11.5: Activities of approving change management

11.5.2.1 Documenting Change Requests

Every project member (stakeholder in the list of stakeholders) should first
of all be acquainted with how change requests in the project are
documented and made. This should definitely be a central function.
Furthermore, every stakeholder should have access to the current version
of the customer and supplier specifications.

Exceptions to this global access are to be expected with commercially
sensitive or security relevant information. The valid versions are those
versions of the specifications agreed between the customer and supplier.

182 11 Change Management interface

When the development of the system has already started, these are also the
versions from which development is done.

Stakeholders from both the supplier and customer must be able to make
change requests.

It is sensible to provide every stakeholder with a clear insight; not only
into the current valid versions of the specifications, but also into all
relevant change requests made. Care must be taken to protect people from
information overload by choosing who should receive which information.
Generally there is a role that is informed about everything with the task to
decide who needs to know what. Keeping stakeholders updated with
relevant information can reduce the risk of one and the same requests
being made and processed several times. In addition, the decisions that
have lead to a request being accepted or rejected are also documented here.

The person receiving change requests (Request Administrator) has the
task of supporting the requestor in producing the change request, so that
analysis of the change request can be quickly addressed.

The Request Administrator then assigns the requests to people who then
analyse the implications. Depending on how complex the system to be
developed is, the person documenting the request must decide whom the
change request concerns and also who will analyse it. The change request
may possibly relate to just one particular configuration in the system to be
developed.

11.5.2.2 Attributes of the Change Request

Normally a change request does not comprise just information that
something needs to be changed and what that change is, but also additional
information that is filed with the change request.

A change request can have the following attributes (additional
information):

• Change request identification number
• Date of recording the change request
• Priority of the change request
• Identity of Requestor
• Short description of the change request
• Reason for the change request
• Status of the change request
• Date of the decision about the change request
• Reason for the decision
• Owner of the change request
• Results of analysis (Implications for the entire project)

 11.5 Two Phases of Change Management: Informing and Approval-based 183

• Reference to requirements in the specification that are likely to be
changed

ID

Date of registration

Priority

Proposer

Short description

Explanation

Change Request

Status

Date of decision

Rationale

Owner

Result of analysis

Reference

Figure 11.6: Possible attributes of a change request

This is just a selection of possible attributes for a change request. Which
attributes are particularly meaningful must be decided on an individual
basis. Amongst other things, this depends on the specific process for
handling the change request, the structure of the system being developed
and the structure of the organisations involved. Now to the attributes in
detail.

Change request identification number: This attribute serves as a way of

being able to uniquely identify a change request in communication with
other project members. The attribute may be used for uniquely capturing
the request in a database and so that it can be referenced to other
information (e.g. requirements).

Date of recording the change request (registration): With this attribute,

the person dealing with the request can, in conjunction with the status,
assess performance in processing the change request.

Priority of the change request: An initial classification of the change

request according to its importance can be made here. Where an error or
conflict in a specification is identified that could generate significant costs,
the estimated priority (importance or urgency) must be higher than for an
additional improvement recommendation. The priority then represents a
criterion that is important in the subsequent change request analysis phase,
when all new change requests must be considered in terms of their effects
on the entire system.

184 11 Change Management interface

Proposer: The name of the person making the request is recorded here.
This is important so as to be able to query the change request.

Short description of the change request: This describes the change

request in one word or a short phrase. It makes communication easier
when discussing the change request.

Explanation: This is a detailed description of what should be changed,

expanded or deleted in the specification. Here, as with the requirements,
it's important to write the change request in an unambiguous and logical
way. Since the change request generally affects the project budget,
milestones and the quality of the system being developed, a rationale is a
good idea.

Status of the change request: With this attribute the status of a change

request can be identified. This helps with processing and making decisions
about change requests. Typical status are "new", "under analysis", "to be
decided", "approved", "incorporated" or "rejected". Incidentally, these are
only examples of status. In certain cases, more or even less classifications
may be a good idea. This depends entirely on how the change requests are
processed.

Date of the decision about the change request: When a decision about a

change request has been made, it's sensible to record the date of the
decision. A similar change request could be made at a later date. Then it
makes sense to have documented the sequence of the decisions.

Rationale for the decision: As a rule, every decision has advantages and

disadvantages. Very often, sometime after a decision for or against a
change request, the disadvantages of the decision will become apparent. If
the reason has not been documented, then a new discussion will start.

Owner of the change request: The owner of a change request is the

person who performs the analysis and is responsible for bringing about a
decision regarding the change request. It is also their responsibility to
inform the requestor about the status of his or her change request.

Results of analysis (implications for the entire projects): The "owner of

the change request" enters the results of the analysis here, i.e. the likely
effects on cost, scheduling and quality of implementing the change
request. This provides the working group deciding on the change request
with a basis on which to make their decision.

 11.5 Two Phases of Change Management: Informing and Approval-based 185

Reference to requirements in the specification affected or likely to be
changed: Here it is a good idea to reference test areas in the specifications,
which need to be customized in the event of the change request being
approved. Where it's possible to search according to references, any
consolidation problems with other change requests can be identified in
good time.

11.5.2.3 Analysis of Change Requests

The aim of this part of the process is to evaluate the effects of the change
request, in order to create a basis for deciding whether the changes can
also be implemented.

This task must be performed by people who are also able to assess the
effects on scheduling, cost and system quality. As a rule, this is a project
manager or an experienced developer.

The analysis can also be split between several people, depending on
how many areas are affected be the request. The important thing is to
nominate someone with overall responsibility who coordinates the entire
analysis. Depending on the specific process, this coordinating person can
also be the person named in the attribute "owner of the change request".

It may become necessary to undertake change request analysis in several
stages. This is the case where one single individual can no longer assess
the effects of the change request.

The "owner of the change request" must present the effects of the
change in a way that the decision makers can understand. Often, when
describing the qualitative effects, the mistake is made of formulating them
in a too technical fashion, so that decision makers have great difficulty
understanding them.

11.5.2.4 Decision to Implement the Change Request

The decision whether to accept a change request is generally made in one
or more forums. The decision making process is highly individual and can
also be conducted at various levels. However, it can generally be said that
the following factors influence the decision making process:

• Results of the analysis (in particular effects on costs and schedule)
• Technical structure of the system to be developed
• Organisational structures of the customer and supplier

The results of the analysis are important since normally, depending on
estimated additional costs, reduction in quality or shifts in the schedules,
another level of management might have to be involved in the decision.

186 11 Change Management interface

It is important to consider the technical structure because the risks of
side effects increase with complex system structures; and those responsible
for each subsystem should take an appropriate part in the decision making.

Ultimately the organisational structures of the participating
organisations are also important, in order to involve all stakeholders as
appropriate.

The working group meets often to decide on change request that already
been analysed. It is up to the coordinator to decide on the priority in which
change requests should be decided. The analysed change requests are
usually collected together and discussed in one session.

The important thing about the composition of the working group is the
participation of personnel from both the customer and supplier.

The final decision of the working group determines whether a change
request should be implemented or rejected. Here it is very important that
the decision is documented.

If the decision is to approve the change and its consequences (changes
to costs, milestones and product quality), the change must firstly be
entered in the customer and supplier specifications. Then, a new version of
the customer and supplier specification documentation is produced. From
then on, development takes place on the basis of these new specifications.
In the process, it is important to ensure that every department affected by
the changes is informed about the new versions of the documentation as
soon as possible.

It is important to group changes into releases and to plan the releases. If
a project is constantly changing it is possible that nothing gets delivered.
In our experience it is better to plan for a number of releases, each
consisting of a viable system. In this way, depending on the type of
project, some experience can be gleaned from use of an early release

11.6 Turning Change Management theory into practice

Section 11.5 describes theoretical approaches to dealing with change. If
these were to be implemented in organisations, a lot of time, conflict and,
above all, costs could be saved. Unfortunately this is often not the case in
practice. The following section is concerned with the factors that make
effective change management so difficult.

Preventing bureaucracy in change management: When an agreement is

first made between a customer and supplier concerning the scope of the
system to be developed, normally everyone involved is satisfied. As a rule,
reaching a consensus is not that easy. A change at a later date restarts the
agreement process. This "extra work" is avoided by all concerned,

 11.6 Turning Change Management theory into practice 187

particularly where a change is seemingly not particularly time-consuming
to implement.

Nondisclosure of changes: Changes after the agreement are interpreted

by some colleagues and superiors as carelessness by the authors of the
customer and supplier specifications. That is, "if the work had been done
more carefully, this change would not have been necessary". The change
itself is regarded as negative. The result is that changes are often not
communicated openly and kept as secret as possible.

No transition from Informing to Approval-based change management:

There are projects, particularly internal ones, where no explicit transition is
agreed. The reasons for this are that the customer is unsure whether he has
actually described all requirements in his specification; and might often
want to keep things open to incorporate changes "free of charge" at a later
stage.

However understandable this strategy may be, it does not allow the
supplier to do any reliable project planning and makes it more difficult to
develop a feasible technical concept or architecture. In addition, a
permanently smouldering conflict exists between the customer and
supplier concerning the services to be provided. Ultimately the customer
lays the foundation for failure, because the chance of actually getting what
is stipulated in unapproved changes is relatively small.

Due to time constraints, changes just before the end of the project are no
longer documented.

This is a quite a favourite problem. As the project end approaches, the
project manager tries to save time by no longer documenting changes in
the specifications, but by implementing them straightaway. This is fatal in
so far as getting approval for a live system requires an up-to-date
specification of the requirements. The negative effects of this behaviour
then materialize in the follow-up project. As a rule, after the seemingly
successful development of a system, a follow-up system will be proposed.
The customer and supplier specifications for the previous system are
normally used as a template for this. However, when this has not been
updated completely, uncomfortable déjà-vu feelings can arise. In short, a
malfunction previously fixed by changes will repeat itself, because the
customer and supplier specifications have not been updated.

11.6.1 Effects of a Lack of Change Management

Poor and unstructured change management can sometimes have serious
consequences for project cost and scheduling. The greater the division of

188 11 Change Management interface

labour: the more serious the effects. Where several development teams do
not have the same information about the status of changes, implementation
will be on the basis of out-dated customer and/or supplier specifications.
Discrepancies in the level of information will eventually become apparent;
in the worst case, not until a subsystem has to be integrated and does not
function as originally planned. As a rule, it can then be established that
development has been incorrectly conceived due to lack of information, for
example about interfaces.

In an actual case, a contract developer made a small change to a
programme to be delivered, at the request of a customer developer. This
programme was a module of a larger system, which had already been
approved and tested. The cost of the regression test, which had to follow,
was more than €100,000.

It is particularly important from the psychological point of view that the
customer is always informed about changes and involved in the decisions
regarding a change. If this doesn't happen, the trust between the customer
and supplier is destroyed. In some circumstances, customer expectations
are not fulfilled. This can even lead to the customer feeling deceived and
the acceptance of the system being refused.

Customer acceptance of the system is also a situation that can become
very difficult when no structured change management has been
implemented. The bases of acceptance tests are in themselves consistent
and current requirements. Where these are nonexistent, there is no
possibility to generate test cases with which to conduct tests. Where only
out of date customer specifications are available, it is difficult and often
actually impossible to incorporate "approved" changes and therefore
produce an up to dated customer specification. No reliable test cases can
be generated without it, and without test results a definite system
acceptance is not possible.

11.6.2 Management support for introducing processes

Management plays a key role in the successful introduction of structured
change management. Sufficient time should be allowed for producing the
first version of the customer and supplier specifications. Unfortunately in
practice, this is relatively seldom allowed for.

Here it is important to remember that the implementation has not yet
started during this phase and that developers are not yet working on the
project. So as not to have developers "sitting around" doing nothing,
attempts are often made to shorten informatory change management as far
as possible. Since normally the most experienced and productive
developers are required to produce customer and supplier specifications, it

 11.7 Procedure for Introducing Structured Change Management 189

is very difficult to remove them from previous projects in order to specify
the follow-on project.

But, in the event of a deadline crisis, these very people are required to
bring the previous project to a close as planned. This is actually a vicious
circle, for which management needs to find solutions by implementing
important decisions and not just giving priority to seemingly urgent
situations.

Furthermore, it must be ensured that customer and supplier
specifications are reviewed accordingly to previously defined criteria, and
that the results of the review are incorporated in the customer and supplier
specifications. This is extremely important prior to an agreement between
the customer and supplier (at the end of the informing change
management).

Of course, every review costs time, which management must approve.
But in any case, this time is well invested and has a definite pay-off in the
implementation and test phases. Management must create a climate in
which timely recognized mistakes have no negative consequences for the
authors of the specifications or project manager. Finding mistakes is good.
Find them before you build the wrong product.

Management should in any case ensure that a process is defined for
approval-based change management between the customer and supplier,
which takes up the theme of change management.

It's important to inform staff about the process and to ensure that they
have adequate support when questions or uncertainties arise. Change
requests should be easy to submit and (for the stakeholder) easy to follow
up.

11.7 Procedure for Introducing Structured Change
Management

As a rule, one should firstly check how changes are normally dealt with in
an organisation, whether processes have already been defined and, more
importantly, whether these processes being followed in reality. If that is
the case, these projects can be structured upon the processes.

If no structured change management processes have been defined or
implemented, they can be defined and implemented in a typical pilot
project. As a pilot project, a project should be chosen in which accepted
staff work, who support the goal of introducing structured processes.

Firstly it should be ensured that all staff involved in the project work on
all requirements based on a standard information base. This standard
information base can be a document or a database. The important thing is

190 11 Change Management interface

that all stakeholders have access to up-to-date information from this
database. A "mini"-process is initially sufficient for an update when
changes occur. This will be tailored depending on the size of the project.
This can be defined as follows:

There is one owner of the database, whose task it is to enter all changes
into the database. It must be made clear to all project members that no
agreements about changes are valid unless they have been entered in this
database. Developers may only implement what is in the database.

In this way an important milestone is created which is the prerequisite
for a structured system approval.

Then one addresses the further development of the change management
process. This includes considering the following factors:

• Organisational structure of the organisation
• Product or system structure
• Configuration management
• Product development process
• Sales process
• Supplier selection

As can be seen, there are numerous factors that affect the final change
management process.

Change management
process

Supplier
selection

Product develop-
ment process

Sales
processes

Structure of
organisation

Structure of
product / system

Configuration
Management

Figure 11.7: Factors influencing the change management process

 11.8 Summary 191

11.8 Summary

In summary, the responsibility for change management must rest with
management. Change requests during development should not be a taboo
subject, but should be decided openly and communicated to all affected
stakeholders.

Above all, careful documentation of the changes, from which customer
and supplier specifications can be updated, before (!) the changes are
implemented, are important in order to provide a basis for system
acceptance. These customer and supplier specifications can represent an
important basis for follow-on systems.

12 Advanced Requirements Management:
the complete specification

So far we have learned about the interfaces of the most prominent systems
engineering disciplines with requirements. These interfaces are described
in detail in chapters 6 through 11. We have explained the meaning of
linking the various kinds of requirements with each other and of linking
requirements with other information. We know how requirements support
the activities of project management, risk management, test management
and so on.

In these previous chapters we have frequently referred to requirements
management as though it was something readily provided, preferrably by
divine providence. Thus the reader may feel that the question is still not
completely anwered: what exactly is requirements management?

The short answer to this question is: requirements management is the
sum of all systems engineering disciplines when applied to requirements.
A somewhat more detailed answer will be given in the following, which,
to a certain extent, is inevitably a repetition and a summary of what has
been said previously in this book.

12.1 Interfaces between other Systems Engineering
disciplines and Requirements

Previously, we have identified the following systems engineering
disciplines to be most important with regard to their interface to
requirements:

• project management
• quality management
• configuration management
• risk management
• test management
• version management
• change management

194 12 Advanced Requirements Management: the complete specification

It has been shown that if these systems engineering disciplines are not
applied to requirements, the quality of the information as provided by
requirements development will soon deteriorate.

For example, without change management the requirements will soon be
outdated, thus giving an obsolete and even incorrect picture. Without
configuration management, after a few months or so nobody will be able to
tell which requirements belong to which version or release of the product.

And the same is true the other way round: the systems engineering
disciplines will not grow to their full strength if they do not make use of
the requirements information. For example, a project management that has
no overview of the current status of implementation will be unable to
relate the budget used so far to the actual project progress. Thus there will
be no reliable comment on whether the project needs correcting actions or
not.

The following figure 12.1 gives an overview of the various interfaces
analysed so far.

Change
Management

Version
Management

Test
Management

Requirements
Development

Configuration
Management

Risk
Management

Quality
Management

Project
Management

Figure 12.1: Interfaces of systems engineering disciplines to requirements

In figure 12.1, the light grey circle encloses all the various system
engineering disciplines interfaces, while the dark grey part of this circle
symbolises the interface of all the systems engineering disciplines as
described in this book to requirements development or requirements
engineering. We use these two terms requirements development and

 12.2 Getting away from the document view 195

requirements engineering to mean the same thing. Thus, the dark grey part
of all interfaces is requirements management, the sum of all interfaces
between requirements engineering and the other systems engineering
discplines.

Note that figure 12.1 could be greatly extended, depending on the
organisation and the specific goals defined for requirements management.
For example, in organisations that use dedicated software tools to support
the requirements management and engineering activities, there could be
another bubble “RM&E Tools”. In the above figure, this would mean that
any RM&E tool must not be assumed to be completely detached from the
other aspects. The tool would have to be able to handle all necessary
interfaces, and might in turn, due to its nature, restrict some of the ways in
which people work. In other words, there would be interfaces to the tool.

As a second example, there could be an organisation that heavily uses
simulations. This could be a supplier in the aircraft industry, where many
products have to be checked by simulation, amongst others. In such an
organisation, the above figure might contain another bubble “Simulations”,
implying that requirements management will assume a specific form to
deal with the information in connection with simulations.

It is also possible to think of organisations where one or more of the
interfaces shown in figure 12.1 are missing. Take the producer of roller
coasters, for example. Typically, roller coasters are individually developed
and therefore exist only once. In such an environment change and version
management will presumably play a lesser role than for example in
software producing organisations, where many software modules are
written to be used again and again in many products and many releases.

Every organisation has to define their individual version of figure 12.1.
Apart from what is more or less important to this specific organisation, its
version of figure 12.1 will also imply how far people want to go with
regard to requirements management. This is a very important point. Do
not blindly follow the ideas in this book. You must work out how much
effort to invest in each area in order to get the best return.

12.2 Getting away from the document view

12.2.1 The document view

Traditionally, requirements are still seen in many organisations as being
part of special documents. Typical names of such documents are for
example “customer requirements specification”, “system requirements
specification” and “design requirements specification”.

196 12 Advanced Requirements Management: the complete specification

One or more such documents are usually the legal basis of a contract
between a customer and a supplier. In other words, the question whether
the supplier actually delivers what the customer pays for is answered by
comparing what is delivered against what should be delivered according to
the respective documents. Figure 12.2 shows some typical associations in
connection with requirements.

Therefore, requirements are recognised by some people as being
associated with mainly legal stuff and as having little to do with “real”
development work. At least, once the contract is won and the specialists
are able to start doing what they really want, the specification is soon
forgotten.

Figure 12.2: Typical associations of requirements documents

This way of thinking is often encouraged by such simple but
nonetheless existing problems like document structure: the documents are
often arranged so as to best fit their legal or contractual purposes. As such,
a typical developer does not feel comfortable with the way the information
may be presented there. And other groups of people might have still other
ideas of an ideal structure. For example, someone belonging to the change
management group could sort the information with regard to the change
cycles that were carried out.

12.2.2 The information view

For the successful introduction and implementation of a requirements
management way of thinking it is most important to help people change
the way they look at requirements. They must understand that

 12.2 Getting away from the document view 197

requirements are a vital part of all project information, and that the
individual fractions of the project information are inevitably intertwined
and related to each other. By contrast to the typical cliché shown in figure
12.2, the following figure 12.3 shows a document independent view of the
various people involved in a project upon all available information.

A figure like 12.3 might help people to start realising that even though
everyone uses a slightly different part of it, it is indeed the same pot of
information they are all sharing.

Project
Manager

Test
Manager

Sales and
Legal Affairs

Developer

StakeholderMarketing

Pr
oj

ec
t

Pl
an

BudgetReli
ab

ilit
y

Deadline
Functions

Quality

Cos
ts

Resources

Version

Figure 12.3: Document independent view upon project information

Once people have grasped this concept, they will change the way they
look upon the other parts of the information. For example, the test
management will begin to understand that if the requirements are reliable
there could be no better source of information for their test activities. As
another example, a risk manager will be happy to have access to so rich a
source of information on possible product, technical and other risks.

Ideally, the various people involved then begin to have their own special
interest in the management of the requirements. Thus for example the risk
manager will support any activities to keep the requirements up to date, so
as to always have reliable risk information. The test managers will see to it
that the change managers put the requirements into the scope of their
activities, so that test management can access information on changes of

198 12 Advanced Requirements Management: the complete specification

requirements. This will enable the testers to always carry out suitable tests
that are not outdated or wrong.

12.3 Implementing Requirements Management

Figure 12.3 suggests that all project information may bee seen as one big
container, and the different people involved in a project simply have their
different views upon this container.

In practice, this information container usually consists of a number of
different tools to support the various specialists. Thus the requirements
managers will usually not use the same tool as the project managers or the
change managers. Although it is often claimed by tool vendors that some
new software supports all disciplines throughout the whole project, we
know of no tool so far that is really fit to serve all the different demands of
the normal project key players as well as we would like.

System Tests

ST-
103

The buttons
must be ECE 7
instead of ECE
192.

DR-
59

ID Ref.Text

User Req.

UR-
701

There must be
a stop button.

SR-18
PR-9

ID Ref.Text

UR-
513

There must be
a run bu

SR

System Req.

SR-
18

There must be
stop buttons
on each side.

CR-701
DR-59
ST-103

ID Ref.Text

SR- There m

Design Req.

DR-
59

Three buttons
conforming to
ECE 192 must
be install

SR-18
DT-10

ID Ref.Text

Project Risks

PR-
9

Users may get
caught and in-
jured by robot.

UR-
701

ID Ref.Text

Change Requests

CR-
34

The buttons
must be ECE 7
instead of ECE
192.

DR-
59

ID Ref.Text

Figure 12.4: Documenting relationships using textual references

For the different tools to form one consistent information container it is
most important that all tool and process interfaces are engineered to
seamlessly mesh with each other. And indeed, it is one of the main
challenges of requirements management to make sure that this is so.

It has been repeatedly pointed out that requirements information will
develop its full strength only when the relations between the individual
parts of the information are documented and can be traced back and forth.
Thus the tool and process interfaces must assure that relations can be

 12.3 Implementing Requirements Management 199

documented even between the data stored in two or more different tools.
And do not forget that the relations will need change management etc.

In a simple case, relations could be documented as textual references in
natural language, as for example shown in figure 12.4. In a more advanced
environment, such relations could be realised using hyperlinks or similar
techniques. This allows for easy navigation from one information sub-
container (tool) to another and vice versa, as shown in figure 12.5.

System Tests

ST-
101

Visual inspec-
tion.

UR-701
UR-513

ID Req. IDText

ST-
24

Pushing the
button once it

UR-701

Test Res.
One button
each exists.

Machine is

User Req.

UR-
701

There must be
a stop button.

ID Text

UR-
513

There must be
a run button.

Ver. Meth. Ver. Crit.
Visual
inspection.

Existence of at
least one button.

Visual
inspectio

Existence of at

Test ID
ST-101
ST-24
ST-101

Figure 12.5: Documenting relationships using hyperlinks or similar

While the tool interfaces will provide the different project members with
easy access to each relevant part of the project information, the processes
and their interfaces must define the way these different pieces of
information are

• created
• maintained
• used
• owned

With regard to requirements management, the respective processes must
define how and when requirements are elicited, specified, analysed,
reviewed, changed, released, implemented and tested.

In parallel, the processes representing requirements management must
define the relevant parts of the requirements information for all systems
engineering disciplines, and how and when each discipline will access
their relevant information.

The following sections show how the each of the above listed interfaces
can be implemented. It is important to note that these suggestions are
neither complete nor absolute. They are meant to provide a draft or a

200 12 Advanced Requirements Management: the complete specification

starting point, and the readers are encouraged to further improve and tailor
these drafts and templates as needed.

12.3.1 Implementing the interface to Project Management and
Quality Management

Chapter 6 shows what kind of information requirements can provide a
project management with. Out of these various kinds of information, we
believe the following to be basic and most important:

• requirements status
• implementation status
• planned implementation
• resources / costs
• responsible

The following discussion details possibilities for understanding and
documenting the information pertaining to the status relevant to project
management. In each case we need the possibility to show whether an
entry has been made or not. Each of the above attributes would have the
possibility to have the status of “To be defined” or more normally in
practice “TBD”.

Also it might be possible that not every entry in a requirements database
will require a defined status. To avoid confusion this needs to be
documented and as mostly done by defining a status of “not applicable” or
more normally in practice “NA”. The use of NA and TBD is assumed and
is not repeated in each of the following sections describing each attribute.

12.3.1.1 Requirements status

This information or column (in a spreadsheet sense) or attribute (in a
database sense) should indicate the current work status of each individual
requirement. The requirements status information will usually be
maintained by developers and quality managers or requirements managers.

It is good practice to restrict the number of possible entries for the
requirements status. A typical list of such entries could look as follows:

• new
• for review
• rework
• accepted
• put back
• deleted

 12.3 Implementing Requirements Management 201

The above list is engineered to be as short as possible, while all vital
information can be extracted. The process using this information or
attribute could be as follows.

Every new requirement would start with the status “new”. This allows
for a quick overview of which parts of a specification have come into
existence only recently.

Once the first version of a requirement is finished, the author sets its
status to “for review”. This is the signal for the people responsible for the
quality of the requirements. They can then start with the requirements
analysis and review.

The result of this could then either be “rework” or “accepted”. If rework
is necessary, an additional attribute or text information could provide more
information on what aspect of the requirement must be improved or
modified before it can be accepted.

If rework was necessary and the responsible author has corrected the
requirement accordingly, he or she sets the status back to “for review”.
Now the requirement can be reviewed again. Once the review and
correction cycle is over, the status of the requirement is “accepted”. The
same procedure applies when a requirement has to be changed. We will go
into more detail on the change management interface in a following
section.

At any point of time during this development cycle the requirement
could also be put back or deleted. Putting a requirement back could mean
that it is not meant to be deleted, but its further development is postponed,
for example because some discussions with stakeholders are necessary.

It is good practice to use the requirements status to indicate whether a
requirements has been deleted, rather than deleting the requirement from
the respective view or even physically. This is because the deleted
requirements tell a certain story and thus provide an additional context or
some background information. If the deleted requirements are not visible
in the normal working view or if they are physically deleted, it might be
unclear why the current collection of requirements is just as it is.

12.3.1.2 Implementation status

This information shows how far the implementation of a requirement has
got. As there are normally only two possibilities, the typical entries for this
field or attribute are “not implemented” and “implemented”.

This attribute will help all relevant people to gather a quick overview of
how much work has already been finished and how much still remains.

Most tools allow filtering and creation of reports based on the
information contained in the database. Using attributes such as
Implementation Status the creation of an overview can be automated.

202 12 Advanced Requirements Management: the complete specification

12.3.1.3 Planned implementation

This information indicates when some requirement should be
implemented, and it can be maintained for example by project
management.

The attribute helps the developers to plan their work packages; it helps
the testers to plan for tests in due time; it helps project management to
check how much work is delayed or is on time.

12.3.1.4 Resources / costs

This information can be maintained by experienced developers or other
staff that have to do with the estimation of costs in projects, for example
project managers or project controllers. It gives an estimate of how much
resources or costs are associated with the implementation of a requirement.

Typical entries in this attribute could be for example “3 man days” or
“1500 €”. This information helps the project management to estimate how
much work has already been carried out and how much is still waiting. If
requirements must be prioritised due to limited resources or budget this
attribute together with some attribute “importance” or similar will prove
most valuable. They support in selecting the requirements that are best
suited for neglecting, such as requirements that are of relatively low
importance but relatively expensive to implement.

12.3.1.5 Responsible

This information is necessary to know who is responsible for the
requirement. Sometimes this attribute is called “Owner”. Who may
change the requirement? Who shall we contact if we have questions
regarding understanding what is meant? When we need to compromise
and move the implementation of a requirement to a later release, who
should best understand the implications of this? Without someone being
responsible for a requirement, without the sense of ownership, we might
easily delete something necessary or spend huge amounts of effort or
resources implementing something that was not very important. Who is
responsible for ensuring that the attributes of a requirement are filled out
and filled out correctly? Someone has to be responsible and we need to
know who it is.

 12.3 Implementing Requirements Management 203

12.3.2 Implementing the interface to Version Management and
Configuration Management

It has been shown in the previous chapter on configuration management
and version management that these two topics cannot be separated from
each other. Rather, they are two different aspects of the same problem.

Regarding requirements, version management is concerned with the
question of archiving and managing one set of requirements at different
stages and points in time. For example, the first draft of user requirements
could be called “user requirements V1.0”. During their further
development, the user requirements might advance to version 3.0, at which
point a branch is created to account for the fact that the system under
development can exist in two basic forms, for example a premium and a
standard version. The two respective branches of user requirements could
be called “user requirements V1.0 P (premium)” and “user requirements
V1.0 S (standard)”. Figure 12.6 shows this situation.

User Requirements
V1.0

User Requirements
Vxy

User Requirements
V3.0

User Requirements
V1.0 P

User Requirements
V1.0 S

User Requirements
Vxx P

User Requirements
Vyy S

Figure 12.6: Example of different versions of user requirements

Configuration management is concerned with the administration of the
different versions of all pieces of necessary project information. For
example, the user requirements V2.3 and the system requirements V2.1
and the design requirements V2.7 together could be called “standard
configuration V1.4”. This is shown in figure 12.7.

204 12 Advanced Requirements Management: the complete specification

V1.0User
Requirements V1.2 V2.0 V2.3 V2.4

System
Requirements V0.1 V1.1 V1.2 V1.6 V2.0

V1.0 V2.0 V2.2 V2.5 V2.7Design
Requirements

V2.8

V2.1

V2.11

Standard
Configuration V1.4

Standard
Configuration Vxy

Figure 12.7: Example configuration with different requirements versions

With a commercial requirements management tool, a pragmatic
approach to requirements version management is the introduction of only
one additional attribute or column. For each individual requirement, this
attribute would list all versions of the set of requirements or requirements
document that this requirement shall belong to. Figure 12.8 shows an
example for such an approach.

User Requirements

UR-
701

There must be a
stop button.

V1
V2
V3

ID VersionText

UR-
702

The stop button
must be red
(RGB 255-0-0).

V1
V2
V3

UR-
703

The stop button
must always be
sensitive.

V1
V2
V3

UR-
81

The light must
be such th

Figure 12.8: Example of using a version attribute for requirements

When using the approach as shown in figure 12.8, it is also necessary to
create a new requirement each time an existing requirement should be
modified for less than all existing versions.

 12.3 Implementing Requirements Management 205

For example, a specific requirement has so far belonged to all existing
versions 1, 2 and 3 of the system requirements. Now the requirement needs
to be changed, but only for version 3, not for versions 1 and 2. In this
situation, the requirement must be copied and modified. The old
requirement would then only be relevant for versions 1 and 2, and the new
requirement only for version 3. Figure 12.9 pictures this example.

User Requirements

UR-
701

There must be a
stop button.

V1
V2
V3

ID VersionText

UR-
702

The stop button
must be red
(RGB 255-0-0).

V1
V2

UR-
924

The stop button
must be blue
(RGB 0-0-255).

V3

UR-
703

The stop butt
must alw

Figure 12.9: Changing a requirement when using a version attribute

In figure 12.9 the attribute “Version” refers to the version or release of
the set of requirements such as a document containing the requirements.
For the sake of simplicity we have not shown here the version numbers of
the individual requirements. There is a relationship between UR-702 and
UR-924 that is not shown in figure 12.9. The relationship is that UR-702
is version 1 of the requirement, and UR-924 is version 2 of the same
requirement. Versions of requirements are mentioned here for
completeness but are not shown due to space constrictions and to enable us
to produce simple diagrammes. In a real project we document the versions
of requirements and also versions of configurations of requirements such
as a versions of a document that will contain particular versions of
requirements.

Although it may seem quite obvious to the reader that in the above
example the modified requirement is actually a new requirement, our
experience shows that quite frequently people would change requirements
and have no way of viewing the older version. Requirements that have
been relevant for release versions 1 and 2 of a document are unfortunately
often overwritten like this, even if the change is only relevant for version 3
of a document.

Practices like this are the source of many confusions and inefficient
ways or working. For the example at hand, a typical reason for such

206 12 Advanced Requirements Management: the complete specification

practices is the assumption by some people that versions 1 and 2 of the
document are obsolete, because version 3 of the document is the most
recent. They forget that there might be products that use version 1 or 2 of
the set of the requirements, and that there must be corresponding tests.
Thus it is important always to be able to recover older versions of a set of
requirements, even if these older versions are currently not used or appear
to be outdated.

With respect to requirements, the version management interface can also
satisfy many of the needs of the configuration management interface. If all
different versions of each set of requirements are known as a result of an
effective version management, then with regard to requirements,
configuration management only has to make sure that the various versions
of each set of requirements are put together correctly.

System Req.

SR-
18

There must be
stop buttons
on each side.

V1.0
V1.1
V2.x

ID Ver.Text

SR- There m

User Req.

UR-
701

There must be
a stop button.

V1.0
V2.0

ID Ver.Text

UR-
513

There must be
a run bu

V1.0

Design Req.

DR-
59

Three buttons
conforming to
ECE 192 must
be install

V1.x
V2.0
V2.1

ID Ver.Text

Configurations

V1.0
User Req: V2.0
System Req: V1.1
Design Req: V1.0

Version Consists of

V1.3
User Req: V2.0
System Req: V
Desig

Figure 12.10: Example of separate version and configuration information

Unlike the version management information, configuration management
information for configuration of sets of documents is quite often not
maintained together with the requirements. This is because while every
single requirement is normally relevant for at least one version of the set of
requirements it belongs to, a configuration of a set of documents usually
contains many requirements from one specific requirements set. In other
words, the version information must be maintained for each individual
requirement, but the configuration information must only be maintained
for sets of versions of different kind of requirements.

Therefore, the version information for sets of requirements is well suited
to be maintained using a specific attribute or column for each requirement,

 12.3 Implementing Requirements Management 207

but it would normally be far too much work and redundancy to also
introduce an attribute for configurations of sets of documents. Figure 12.10
sketches how version and configuration information for sets of
requirements can be maintained separately. The attribute “Ver.” In Figure
12.10 refers to the version of the set of requirements that each requirement
is a member of.

12.3.3 Implementing the interface to Risk Management

From the requirements point of view, the implementation of the interface
to risk management is relatively simple. As the relation between risks and
requirements is generally n:m, the risks are usually maintained separately
from the requirements.

This is especially true since risks usually have their own special set of
additional information or attributes, which has been described in detail in
chapter 9 on risk management. Thus the risk management information can
be thought of as being orthogonal to the requirements information.

We therefore suggest to add only one attribute or column to the
requirements information, and to use this attribute to list all risks that relate
to each individual requirement. In order to be able to navigate in both
directions, a corresponding attribute or column would have to be
introduced also in the risk information container or risk document. Figure
12.11 shows what has been said so far.

User Req.

UR-
701

There must be
a stop button. PR-9

ID RiskText

UR-
513

There must be
a run bu

System Req.

SR-
18

There must be
stop buttons
on each side.

PR-9

ID RiskText

SR- There m

Design Req.

DR-
59

Three buttons
conforming to
ECE 192 must
be install

PR-9

ID RiskText

Project Risks

PR-9
Users may get
caught and in-
jured by robot.

UR-701
SR-18
DR-59

ID Req.Text

Users may

Figure 12.11: Example interface to risk management using a risk attribute

208 12 Advanced Requirements Management: the complete specification

As can be seen from figure 12.11, each time a requirement or risk
information is changed, the interface must be taken into account. Thus for
example, changing a requirement could mean that some risk no longer
applies to this requirement, or that a risk that has so far been irrelevant for
the requirement at hand now becomes relevant, or that a new risk comes
into existence.

In turn, changing the risk information could mean that this risk no
longer applies to one or more of the requirements it has applied to so far,
or that it applies to more requirements than before, or that it applies to
other requirements now.

In both cases, the interface attribute must be checked and maintained
accordingly to make sure that the information and relationships (links) are
always up to date.

12.3.4 Implementing the interface to Test Management

The interface to test management is similar to the interface to risk
management in that the test management information is orthogonal to the
requirements information, as the relationship between these two is n:m in
general.

Referring to the detailed discussion on test management in chapter 10,
we suggest the use of three attributes to be added to the requirements
information. In this approach, one attribute is used to reference the relevant
test cases, and the other two attributes are used to document the
verification method and verification criteria.

All other test information, like for example the name of the responsible
tester and the test result, must be documented, too. To keep the
maintenance of the requirements as simple as possible, we suggest that
these data are all stored in the test management information to start with.

Adding a corresponding reference attribute to the test information would
allow for the possibility to navigate from the requirements to the tests and
vice versa. Figure 12.12 shows an example of an interface to test
management as described.

Similar to what has been said in connection with the interface to risk
management, the interface to test management must be taken into account
and checked each time a requirement or a test is modified.

For example, changing a requirement could mean that the test case that
has been planned to be used so far can no longer be applied. Maybe
another test case can then be used, or maybe a new test case must be
created.

Changing a test case on the other hand could mean that some of the
requirements that should be tested with this test case are no longer

 12.3 Implementing Requirements Management 209

covered, or that more requirements than before can now be tested with this
one test case.

User Req.

UR-
701

There must be
a stop button.

ID Text

UR-
513

There must be
a run button.

Ver. Meth. Ver. Crit.
Visual
inspection.

Existence of at
least one button.

Visual
inspection

Existence of at
l

Test ID
ST-24
ST-101
ST-101

System Tests

ST-
101

Visual inspec-
tion.

UR-701
UR-513

ID Req IDText

ST-
24

Pushing the
button once it

UR-701

Test Res.

OK, 01Sep07

Tester
Flash
Gordon

FlashOK, 01Sep07

Figure 12.12: Example interface to test management using a test attribute

Due to the interface between requirements and tests, and the interface
between requirements and risks, the risks may be taken into account when
deciding on a test strategy. For instance high risks might lead to a decision
to test the system against the requirements to a higher level of assurance.
We see that risks, for example are common to requirements, risk
management, and test management. In reality all systems engineering
disciplines are interrelated. Requirements management is the sum of the
disciplines of systems engineering applied to requirements. The interface
between requirements and all other systems engineering disciplines is the
sum of the interfaces between requirements and each individual systems
engineering discipline.

12.3.5 Implementing the interface to Change Management

In connection with the maintenance of the interfaces to the various systems
engineering disciplines the previous sections already touched upon the
topic of change management.

In particular, it has been pointed out that each time a requirement is
changed the impact on its relation to risk and test information must
carefully be checked. In turn, changing a risk or test information must go
hand in hand with checking the impact on the relationships between risks
and requirements or tests and requirements, respectively.

In connection with the version and configuration management interfaces
we have shown that changes to requirements necessitate a check on the
valid versions and configurations, and vice versa. Thus if a new version of
one set of requirements or a new configuration of more than one set of

210 12 Advanced Requirements Management: the complete specification

requirements is to be created, or an existing one is to be modified, it must
be carefully defined which requirements shall belong and which shall not.

It has been briefly mentioned that the quality management interface is
such that each time a requirement is changed, the requirements review and
analysis cycle must be gone through.

Only with regard to the project management interface, change aspects
have not been considered explicitly. It is however understood that each
time a requirement changes, it must carefully be checked whether this
change will create additional costs, consume additional resources, cause
delays and so on. But the project management interface must not only be
maintained by the requirements people. Thus if there is a change in the
project management plan due to budget cuts, staff availability and so on,
this information must flow back to the requirements managers. Only then
will it be possible to decide whether some requirements must be neglected
for implementation and which ones these should be.

Apart from this, the changes to the requirements themselves have to be
documented in order to be able to reproduce the current version, any
previous versions and the history of changes. If special requirements
management and engineering tools are used, these should provide a history
mechanism to trace back any changes that have been made to any part of
the available information, which basically is the complete set of attributes
or columns and associations. Note however that the versioning and
configuration mechanisms provided by such professional and commercial
software are normally found to be insufficient without customisation when
things become only a little bit more complex.

Many organisations simply use common office software such as WORD
or Excel when they start introducing dedicated requirements management
and engineering processes, and nobody should underestimate such
approaches. There are organisations that are brilliant in using named
software even in rather complex projects, and there are organisations that
although they have access to the finest state of the art software, will
probably never manage to get things right.

Besides, using the history mechanism of professional software is not
always straightforward and the relevant information can only be extracted
with many mouse clicks. This is often found to be rather ineffective.
Therefore, and in view of users of standard office tools as mentioned
before, a relatively simple but quite effective solution is the use of one
history attribute or column.

After the initial version of a requirement has been created, all changes to
this requirement are documented using the history attribute. The procedure
would then be as follows: copy the current version of the requirement into
the history attribute (or append it to any existing entries) and formulate the

 12.3 Implementing Requirements Management 211

new requirements version in the normal text attribute. Figure 12.13 shows
an example of the result of this procedure.

User Req.

UR-
701

There must be
5 stop buttons.

ID Text

UR-
513

There must be
a run button.

Author
U. Looser,
01Apr2007

There must be 3 stop buttons.
(John Johnssonson, 3Mar2007)

C. Side,
12Dec2006

History

Figure 12.13: Example of using a history attribute

Of course, a similar approach could be used to document changes to the
other interface attributes, for example the three suggested test attributes. It
is also possible to document any changes to the requirement or any
associated attribute or column in the history attribute only. However, this
may lead to problems with large chunks of text in some standard software
tools.

Alternatively, the requirements text could simply be extended by
entering the new version. If the software used for requirements engineering
and management is limited in view of length of text entries, then a new
row or object might be inserted in the right place. To support the reader of
the document in telling history from the current version of a requirement,
the previous entries could be struck through. Figure 12.14 sketches this
alternative approach.

User Req.

UR-
701

There must be
3 stop buttons.

ID Text

There must be
5 stop buttons.

Author
J. Johnssonson,
03Mar2007
U. Looser,
01Apr2007

UR-
513

There must be
a run button.

C. Sid

Figure 12.14: Documenting the history together with the requirement

The solution shown in 12.14 can easily be applied to any other attributes
or columns if they are also subject to changes. This has the advantage that
changes are immediately visible. Some authors do not use any technique
even though it costs nothing to implement and nothing to introduce. There
are unfortunately some authors that still deliver 150 page requirements
documents with no documentation of what has changed since the previous
version.

212 12 Advanced Requirements Management: the complete specification

12.3.6 Overview

The previous sections showed how requirements management, which is
the sum of the interfaces of requirements development or requirements
engineering to all the other systems engineering disciplines, can initially be
implemented.

It has been described how all project information related to requirements
can be managed if all the systems engineering disciplines work together to
this common end. For a basic requirements management, we suggest the
following set of attributes or columns to maintain together with the
requirements:

• reqiurements status
• implementation status
• planned implementation
• resources / costs
• responsible
• version
• risk
• test id
• verification method
• verification criteria
• history

Thus with only 11 attributes or columns (in addition to the attributes and
columns that have been suggested in connection with requirements
engineering in general, such as references or links, author, ID and so on), it
is possible to multiply the power of requirements information.

We have pointed out that requirements management will only be
effective if the interfaces are maintained not only by the requirements
people, but also by the people responsible for all the other systems
engineering disciplines.

Therefore, in addition to the attributes suggested above, the test
managers, risk managers and project managers must maintain their parts of
the project information, too, and share their information with the
requirements managers. Ideally, all the pieces of information of each
systems engineering discipline mesh with all the others, so as to give one
complete set of data.

 12.4 Summary 213

12.4 Summary

This chapter summarises and completes all the previous chapters on the
various interfaces of requirements engineering to all the other systems
engineering disciplines analysed in this book.

The chapter shows that in fact, requirements management is not an
independent systems engineering discipline. Rather, requirements
management is the sum of all systems engineering disciplines when
applied to requirements.

The requirements management philosophy is shown to be most effective
when a documents based view upon the available project information is
abandoned in favour of an information based view. Changing their point of
view this way, the people involved in a project will soon start to realise
that they actually all use and need the same information container. The
only things that might be different from case to case are the individual
portions of this information that are relevant for each project member.
Thus for example the requirements engineers might mainly be interested in
the requirements texts, while the risk managers are mainly interested in the
risks associated with requirements, and the project manager could be
mainly interested in the resources and budget consumption due to the
requirements.

In the following sections of this chapter, a suggestion is made for a basic
initial approach to requirements management. In short, it is shown how
using just a few attributes or columns for requirements (in addition to
those that should be part of requirements information anyways, such as
identifier, author, date and so on) can already address many of the
problems described in earlier chapters.

These attributes are the requirements engineering part of requirements
management, and they represent the interface to project management,
quality management, configuration management, risk management, test
management, version management and change management.

Examples and recommendations of how to use these attributes are
given, and alternative approaches are described for users of professional
requirements engineering and management tools and users of standard
office software.

This said, the authors hope that the reader feels a little bit more familiar
with the philosophy and aims of requirements management now. We
encourage everybody to just start introducing dedicated requirements
engineering and management activities and thus get a feeling for what is
more applicable and what is less, and which needs and situations a specific
organisation must address in order to be successful.

214 12 Advanced Requirements Management: the complete specification

Requirements management is an adventure in its own right, and like all
true adventures there will be obstacles and times of doubt. However, a
happy end usually waits for those who go through all the efforts to
overcome the obstacles. As with everything, the beginning is the hardest –
once the mechanism is set in gear and running more or less smoothly, it
will be hard to stop it.

Finally, do not forget: according to our own viewpoint, things just have
to be started, no matter how sophisticated this is to begin with. You can
always improve things as necessary as you carry on. It will never be too
late to improve.

13 The HOOD Capability Models

This chapter gives a brief introduction to and overview of capability
models in general, presents a few of the currently widely used capability
models for requirements engineering and management in some detail and
introduces the HOOD capability models for requirements definition and
requirements management. These two models will be dealt with in detail in
the following two chapters.

13.1 The meaning of capability models

In principle, capability models shall support organisations in estimating
their current status with regard to certain abilities, and they have
experienced an ever increasing interest throughout the last two or three
decades.

Usually, capability models try to measure the maturity of various
processes within an organisation. For example, a certain capability model
could classify an organisation’s abilities with respect to developing
software code, while some other capability model specialises in
determining the effectivity of an organisation’s administration.

The basic idea behind capability models is the assumption that a high
quality of processes will be reflected in a high quality of the results or
artefacts of these processes. In connection with requirements engineering
and management, the processes that are involved in developing a product
are of special interest. It is the common belief of almost all industries that
if the development processes are of high quality, the final products will
inherit a fair portion of that quality. This is thought to be true of practically
all products including services, be it software, hardware, mechanical parts
or anything else.

Many hours of work have been spent with the effort to come up with
consistent capability models that cover almost all aspects of an
organisation, rather than specialising in only one or a few fields of typical
activities. Two very well-known results of such efforts are the Capability
Maturity Model Integration, or CMMI, and the model for Software Process

216 13 The HOOD Capability Models

Improvement and Capability Determination, or SPICE. We will look at
these two models in some detail later in chapter 13.3.

By offering methods for estimating how far advanced an organisation is
with respect to its processes, capability models automatically provide a
basis for improving the processes. Quite frequently, the evaluation patterns
go hand in hand with checklists or tables of contents to support the user of
the model in setting up appropriate processes or in improving existing
processes.

However, there are drawbacks to this, too. Many people think that what
they have to do is strictly follow the rules and recommendations of the
specific capability model they chose to use. Such an attitude is often
reinforced by the fact that the organisation does not want to work with
capability models at all, but is forced to do so by industry partners. For
example, the big automobile manufacturers expect their suppliers to be
certified according to some capability model. If a supplier refuses to
become certified, this frequently means that he will no longer be able to
win any contracts.

But in an ideal world, it would be the other way round. An organisation
would seek to improve its processes on its own account. Only after having
established appropriate and effective processes, the organisation could then
check whether their processes are in agreement with what is considered to
be the current standard or state of the art. Obviously this should be an
iterative improvement effort, and not just done once and for all. Every
long journey starts with one step.
In our experience, organisations that choose the second approach usually
fulfil the requirements of the common capability models easily, while
organisations that choose the first approach frequently fail because they
only follow what is written, not the spirit of the model.

13.2 Why we need capability models

Since capability models support in evaluating the status of an organisation
with respect to the maturity of its processes, such models are strongly
connected to measurement and metrics. An organisation needs the
possibility to judge its status at any time and to measure its progress from
one evaluation to the next for many reasons.

One reason is the need to relate expenditures to benefits. What is an
improvement of process quality good for if the organisation spends all its
money for these process improvements and is finally ruined. On the other
hand, how much improvement does an organisation expect when it is
prepared to spend only say, 0.1% of its net profit.

 13.2 Why we need capability models 217

Another equally important reason is the psychological side of process
improvements. It is well known that an organisation usually has to
overcome severe barriers when introducing new processes, methods and
tools. This is due to those people within the organisation that are affected
by these changes. They will usually resist changes, for changes inevitably
mean saying goodbye to some old ways of thinking and working, having to
learn new things, feeling insecure and so on. Amongst other things, one
very strong and reliable means to lessen such resistance is the ability to
clearly show what has been achieved so far and to outline the next steps.
If people can see a possibility of success then they generally have less
anxiety than if the task seems insurmountable.

Since capability models normally follow a little-by-little philosophy
with increasing levels of maturity, they provide numerous milestones of
more and less importance. This is perfectly suited to help motivate people
within an organisation to change. Instead of trying to reach some rather
virtual and far-off goal, people can thus experience little successes all the
way long.

The third reason for why we may need capability models is the fact that
the models approximately outline how improvements may be
accomplished. Each model does this implicitly, and some do explicitly.
They thus give an idea of how to get started with improvements.

For example, when we use a model’s checklist for our software
development process and the evaluation comes up with the result that the
change management is missing or inadequate, then we know at least that
we must go into further details with our change management processes, if
they exist or are documented at all. In this case the checklist and the result
of the evaluation are implicit hints at what to do to improve. The more
detailed the evaluation process of the chosen capability model is, the more
detailed we will implicitly be told what to concentrate on to become better.

A framework to be tailored to individual needs is an example of an
explicit capability model. For example, a specific model could demand
that requirements be managed in terms of changes and tests to reach a
certain level. We then know beforehand that if we want to achieve that
maturity level, we must have change management and test management
processes. Depending on how far the model goes into details, we may also
be able to tell what aspects these processes must cover and which level of
quality they must conform to.

A fourth reason to use capability models is the need for standardisation.
Although generally all efforts of an organisation to improve its own
processes must be acknowledged and encouraged, a comparison between
different organisations becomes hard or impossible if everyone uses their
own individual plans for process improvements and evaluations. For
example, it is very common that the large original equipment

218 13 The HOOD Capability Models

manufacturers demand of their suppliers to be qualified and certified to
work according to a certain level of maturity of one of the well known
capability models.

Using tested and proven concepts avoids the problem of every
organisation reinventing the wheel again and again. This also means that
inefficient experimenting stemming from inexperience is minimised, and
the improvement measures will become effective much quicker than
otherwise. The framework that such standards offer should however not be
mistaken to be inflexible, and the suggestions must not be assumed to be
rigid laws.

With the main reasons for using capability models described, we will
now go into some detail with two proven and frequently used models,
SPICE and CMMI.

13.3 Two example capability models

13.3.1 SPICE

The abbreviation SPICE was originally created as the short form of
Software Process Improvement and Capability Evaluation, but was later
changed to mean Software Process Improvement and Capability
dEtermination, due to concerns about the word “evaluation”.

SPICE basically represents a framework to assess software processes
and was created by the International Organisation for Standardisation, ISO,
and the International Electrotechnical Commission, IEC. It therefore
carries the identifier ISO 15504 ([wikipedia]).

The technical report of SPICE is divided into a number of parts. Some
of the most important of these are:

• part 1: concept and overview
• part 2: reference model
• part 3: performing assessments
• part 4: improving processes
• part 5: assessment model
• part 6: assessors

SPICE is usually used to improve processes and to determine the
maturity of existing processes. Organisations can become assessed through
the evaluation of their processes by certified and trained SPICE assessors.
SPICE uses 6 levels of maturity to classify processes ([wikipedia]):

• level 0: incomplete

 13.3 Two example capability models 219

• level 1: performed
• level 2: managed
• level 3: established
• level 4: predictable
• level 5: optimised

In order to arrive at a result, the processes that are assessed with SPICE
are analysed with respect to 9 process attributes. These are:

• performance
• performance management
• work product management
• definition
• deployment
• measurement
• control
• innovation
• optimisation

Each of these process attributes is rated on the following scale with four
points:

• 0 – 15%: not (N)
• 15 – 50%: partially (P)
• 50 – 85%: largely (L)
• +85%: fully (F)

Originally, SPICE focussed exclusively on software development
processes. But as the model was more and more applied it became clear
that the processes that interface with software development must also
match a certain level of maturity, otherwise the effect of well-established
software development processes alone must remain limited.

Therefore, SPICE has continuously been expanded and at the moment
covers the following business areas:

• organisational
• management
• engineering
• acquisition
• support
• operations

SPICE has been widely used in industry since it has been first drafted
out in 1993/1994. There was a major revision in 2004, and amongst others

220 13 The HOOD Capability Models

the process reference model was removed then. SPICE has influenced the
development of the CMMI capability model and vice versa.

13.3.2 CMMI

CMMI stands for Capability Maturity Model Integration. It is the
successor of the Capability Maturity Model, or CMM. The latter was
developed from about 1987 until 1997, and CMMI was first released in
2002.

CMM and CMMI were developed by the by the Software Engineering
Institute (SEI) of the Carnegie Mellon university and have been sponsored
by the US Department of Defense, amongst others([wikipedia]).

The basic aim of the CMM and CMMI is to support organisations in
improving their processes. To this end, CMMI makes suggestions as to
which processes to establish for 22 different process areas. The CMMI
model strongly recommends that it be tailored to the needs and boundary
conditions of each individual organisation. Therefore, there is no
standardised way to rate an organisation on the CMMI scale, but there are
appraisals based on methods such as SCAMPI ([wikipedia]).

CMMI focusses on which processes should exist in each process area,
rather than how to implement or organise these processes. CMMI wants to
improve the usability of capability models for various engineering
disciplines. It is a collection of a number of different maturity models,
integrating these into a common framework.

The 22 process areas momentarily covered by CMMI are:

• CMMI Causal Analysis and Resolution
• CMMI Configuration Management
• CMMI Decision Analysis and Resolution
• CMMI Integrated Project Management
• CMMI Measurement and Analysis
• CMMI Organizational Innovation and Deployment
• CMMI Organizational Process Definition
• CMMI Organizational Process Focus
• CMMI Organizational Process Performance
• CMMI Organizational Training
• CMMI Product Integration
• CMMI Project Monitoring and Control
• CMMI Project Planning
• CMMI Process and Product Quality Assurance
• CMMI Quantitative Project Management

 13.4 HOOD Capability Model for Requirements Definition 221

• CMMI Requirements Development
• CMMI Requirements Management
• CMMI Risk Management
• CMMI Supplier Agreement Management
• CMMI Technical Solution
• CMMI Validation
• CMMI Verification

By contrast to the SPICE model, CMMI is freely available, for example
from the SEI homepage. This is one of the reason why compared to
SPICE, CMMI appears to have been more successful.

Usually, capability models that cover a number of process areas, like
SPICE and CMMI, do not go into very much detail with respect to each
individual process. This is due to the amount of information that appears
suited in connection with a model.

For this reason, models like SPICE and CMMI go hand in hand with
other models that patch up gaps and black holes of certain detailed aspects
in the high level models.

Two of such models that can complete the high level models are the
HOOD capability models for requirements definition and HOOD
capability model for requirements management. They will now be briefly
introduced and are dealt with in detail in the following two chapters.

13.4 HOOD Capability Model for Requirements
Definition

The HOOD capability model for requirements definition (HCM-RD)
represents the HOOD Group’s suggestion for how to evaluate the quality
of the processes. This may also be used for a guide for stepwise introduce
and to improve requirements definition processes in an organisation.

The model goes into very much detail with respect to the information
that should be documented along with requirements. This covers for
example stakeholder lists, project scope, and interfaces. Thus, the model
can be used to extend or complete more general capability models such as
SPICE or CMMI regarding the elicitation of requirements and all
necessary information in connection with requirements.

The HCM classifies the maturity of an organisation with respect to
requirements definition on a scale with 3 levels (apart from level 0: no
processes at all). However, this classification is not rigid and should be
adapted to meet the needs of an individual organisation. As we said

222 13 The HOOD Capability Models

earlier, an organisation needs to decide for itself what scope for its process
is necessary.

This flexibility is one of the main advantages of the HCM-RD over
other existing models. Another advantage is the fact that the model goes
into so much detail of requirements development that in principle,
everyone can start introducing and improving their processes and methods
on the spot.

13.5 HOOD Capability Model for Requirements
Management

Along with the HOOD capability model for requirements definition, there
is also the HOOD capability model for requirements management (HCM-
RM). These two belong closely together, for one will not be effective
without the other.

The model is similar to the requirements definition model and shows
how requirements management can be evaluated. HCM-RM can also be
used to guide requirements management as it is introduced and improved
step by step. Again, three levels of maturity are defined (apart from level
0, no requirements management at all).

To reach a certain level, various aspects of interfaces to the other
systems engineering disciplines have to be taken into account.

13.6 Summary

This chapter gives an overview of what capability models are in general,
how a capability model is used and when and why the use of capability
models can be advantageous.

Two well-known models that are currently widely used in industry, the
Capability Maturity Model Integration (CMMI) and the Software Process
Improvement and Capability Determination (SPICE), are described in
some detail.

The HOOD capability model for requirements definition (HCM-RD)
and the HOOD capability model for requirements management (HCM-
RM) are introduced. It is shown how due to their very fine level of detail,
these two models can supplement and complete existing high level
capability models such as SPICE and CMMI with respect to all process
areas associated with requirements.

The HCM-RD and the HCM-RM will be discussed in great detail in the
following chapters.

14 The HOOD Capability Model
for Requirements Definition

In the previous chapters numerous references have been made to various
capability or maturity models. Examples for some well known such
models are the Rational Unified Process (RUP) and the Capability
Maturity Model Integration (CMMI), and both are also applied in
connection with requirements management and engineering. Capability
models are generally used to assess how advanced some organisation is
with regard to a certain field of expertise. To this end, such models usually
offer various means to classify all the processes underlying the
development cycle on a certain scale.

The HOOD capability model for requirements definition (HCM-RD) is
the HOOD Group’s standard capability model for assessing the maturity of
an organisation’s requirements definition process. The HOOD
requirements definition process was introduced in the first chapters of this
book and can also be found in [Hood2005], but will be briefly referenced
here.

14.1 Brief repetition of the HOOD Requirements
Definition Process

The previous chapters showed in detail the various activities that are
necessary for the definition of requirements, and the HOOD requirements
definition process was presented. We recall that in summary, the
requirements definition process consists of the following activities.

Definition of scope:
• identify interfaces
• define interfaces
• define stakeholders and roles

Definition of requirements:
• elicitation

224 14 The HOOD Capability Model for Requirements Definition

• specification
• analysis
• review

We also recall that modelling was the one activity that can support any
other activity, and that all activities can take place at the same time. The
HOOD requirements definition process is shown in figure 14.1.

initiate project
(process tailoring, ...)

create design, derive
requirements

elicitation specification

m
od

el
lin

g

analysis review

identify
interfaces

define
interfaces

define stakehol-
ders and roles

de
fin

iti
on

of
 s

co
pe

de
fin

iti
on

of
re

qu
ire

m
en

ts

Figure 14.1: HOOD requirements definition process

The following sections will show how the quality of the requirements
definition process and its activities can be measured using the HCM-RD.

14.2 The idea behind the HOOD capability model
for requirements definition

It is a commonplace that success in an organisation depends almost solely
on the people working for it. This has been true, it still is true, and it will
remain true for quite some time. It appears as though this is so
fundamentally true that nobody consciously tries to recall what this
actually means.

Phrases like “Our people are our best asset” are ten a penny, and many
companies try to ride this would-be human wave. However, observing the

14.2 The idea behind the HOOD capability model for requirements definition 225

world around us will sometimes make you wonder whether those in charge
of the relevant decisions do care about the people at all.

The HOOD Group’s philosophy has always put the people in the centre
of all efforts. (OH NO! we here you cry, not another platitude! But we
mean it). From the very beginning of every project to introduce
requirements management and engineering and associated processes, those
who will be affected are taken into account, and their needs and fears are
taken seriously. Many years of experience in different industries show that
quite often, ideas that are basically good cannot be made work because the
people who should implement the idea were not considered properly.

The introduction of requirements management and engineering in an
organisation is usually not a simple thing to do. Developers have to adapt
to a new development philosophy, to new processes, methods and tools.
This is often associated with resistance caused by anxiety or fear of the
unknown.

Figure 14.2: Overview of the different levels of the HCM-RD

To lessen that resistance, many different means must be applied.
Amongst those are for example interviews, workshops, questionnaires and
the like. The nature of the resistance is manifold, ranging for example from
fear of becoming redundant to hate because the intended processes would
make the development processes more transparent.

The HOOD capability model for requirements definition addresses
many of these problems by chopping what is called “introduction of

226 14 The HOOD Capability Model for Requirements Definition

requirements management and engineering” into manageable pieces. Thus
it is not necessary to go for the big bang introduction, which is usually
doomed to fail.

Rather, small steps of improvement are taken one by one and with the
speed that fits the organisation. The following figure 14.2 shows the single
HCM-RD levels leading to the final expert level 3.

The underlying assumption of such an approach is that small steps of
improvement are very much easier to implement than the complete thing.
This assumption is supported by the experience of many requirements
management and engineering introduction projects.

The monitoring of the progress and success goes hand in hand with the
small implementation steps. Hence smaller and larger milestones are
placed all along the way to the planned quality of the development process.
This is very motivating for the people implementing the improvements, for
there are smaller and larger successes in a relatively high frequency. Cases
are known where after having overcome the initial problems, new
successes in quality improvement could be celebrated almost weekly.

Also, an approach with small steps is usually more attractive to the
organisation’s management. It makes the project easier to track, and the
risks associated with each small step are smaller and can be assessed more
precisely. If the management has a positive attitude towards the project
and shows confidence, this will serve as an example, motivating the people
involved even more. This in turn will speed up the progress of
improvements, which will be more motivating and so on, thus closing the
circle.

14.3 The structure of the HOOD capability model
for requirements definition

The HOOD capability model for requirements definition is basically
organised as a matrix, relating levels of maturity to the single requirements
definition process activities as shown in the following figure 14.3.

It is important here to note that the above figure is only a suggestion,
based on good practices and experience. It shall serve as a starting point,
but can be customised in whichever way appears suitable. The sequence
for introduction is not suggested by the above table. An organisation
might prefer to for instance not use modelling, or perhaps review is out of
scope as this is done by others.

14.3 The structure of the HOOD capability model for requirements definition 227

Level 1 Level 2 Level 3

scope

modelling

elicitation

specification

analysis

review

- list of interfaces
- stakeholders & roles
- functions / objects

definition of interfaces

scope
- sequence, states, data,
algorithms

- fit for intended readers

requirements are taken
from existing specifi-
cations

requirements are
prioritised

proper elicitation
technique

- atomic
- identifiable
- structured

- understandable
- testable
- ...

- complete
- traceable
- correct abstraction level

- atomic
- identifiable
- structured

- understandable
- testable
- ...

- complete
- traceable
- correct abstraction level

reviews are
- carried out
- documented

- all roles
- each iteration
- criteria

- explicitly with regard to
quality criteria

- participants

Figure 14.3: HOOD capability model
for requirements definition (HCM-RD)

Level 1.1 Level 1.2 Level 1.3

scope

modelling

elicitation

specification

analysis

review

- list of interfaces
- stakeholders &

roles
- functions/objects

scope

requirements are
taken from exist-
ing specifications

- atomic
- identifiable

- atomic
- identifiable

reviews are
- carried out
- documented

Level 1.4

- structured

- structured

Figure 14.4: HCM-RD Level 1, broken down into more detailed sublevels

228 14 The HOOD Capability Model for Requirements Definition

What is important is that a specific organisation analyses their needs and
resources, and then creates a plan to introduce requirements management
and engineering in manageable and suitable portions. Analogous to every
management plan, the single levels of maturity shown in figure 14.3 can be
further broken down into more detailed sublevels as shown in figure 14.4.
Note again that this is not an inflexible and set plan, but can be tailored
according to an organisation’s individual needs and visions.

14.4 How to use the HOOD capability model
for requirements definition

In the following, we will show how to apply the HCM-RD, and what its
various levels actually mean. It is important to understand that the different
levels as suggested in figure 14.3 are neither a suggestion nor requirement
for a sequence for introduction in an orgainisation.

For instance, you do not have to complete one level before you tackle
the next. It would be very unwise for example not to work on requirements
traceability if you already could, only because you have not yet reached
level 3.

The improvement progress must continuously be monitored with
suitable metrics, and significant advances must be made visible and
communicated to the people involved. People will be motivated only if
they know and understand what they have already achieved. They may
then want more on their own, thus starting a chain reaction.

14.4.1 Level 1: Getting started

As with everything else, getting started is always the hardest thing. This is
true because at that point in time some old habits must be thrown aside,
and as everyone knows, old habits die hard. For instance we know of one
organisation where a development engineer was capable of writing
computer programmes in Hexadecimal code (a very low level computer
language) and he recently found the switch to more modern computer
languages that younger engineers could read to be very hard.

With level 1, it becomes necessary to consciously identify requirements
and to separate these from additional information. The requirements must
match a certain level of quality, and to this end they must be analysed
(checked against quality criteria) and reviewed. To prepare for later
requirements elicitations, possible stakeholders and their roles must be
identified.

 14.4 How to use the HOOD capability model for requirements definition 229

All these activities must constantly be focussed by defining the scope of
the system to be developed.

14.4.1.1 Scoping

The definition of the system boundaries as shown in figure 14.5 is the
beginning of all structured requirements management and engineering.

Computer System

Mouse

Keyboard

Monitor
Power Supply

Main Board Memory Board

Hard Drive
USB Connector

Mains Connector

Monitor Connector
Housing

Peripherals

Peter Jones + teamSupplier

Ralph

Tom

Roger

Others Us
Interfaces

Figure 14.5: Example scoping of a computer system with interfaces

It is amazing what a simple picture as shown in figure 14.5, drawn at the
beginning of a development project, or a few lines of text can accomplish.
It is equally amazing what effects it can sometimes have not to draw such
a picture or not to jot down these few lines of text.

For example, consider a control unit controlling an automobile’s engine.
Or, more dramatically, consider the unit controlling one aspect of a nuclear
power plant. There has been a trend throughout the last decade or so to
software becoming cheaper and cheaper. What has been hardware before,
for example special control circuits, can now be realised with software
code and standard micro controllers. And yet there are still applications
where the hardware version is mandatory because it is still faster than the
software version.

In our example, the software engineers must know whether they have to
implement the control logic as software or whether the hardware engineers
will create a special circuit. If there was no communication at all between
these two groups of engineers the final system may turn out to have two
controllers, one in software and one in hardware. More probably, the

230 14 The HOOD Capability Model for Requirements Definition

system would have no controller at all, for each group relies on the other to
implement it.

When you build an elevator system, it must be clear whether you only
build the elevator cage or whether you will also build the rail system to
guide the cage or whether you will also build the engine or motor that will
drive the whole system. This example is depicted in figure 14.6.

�

power

control
unit

engine

cables

telephone
linecage

rails

Figure 14.6: Possible subsystems of an elevator with interfaces

Although this may all seem rather obvious, it appears to be forgotten
many times once a project has started. From many years of experience we
know that quite often, promising projects lift off in quite a respectable
manner, with all staff motivated and efficient. When some time has
elapsed however, people start concentrating on their own little subsystem
and begin to forget about the others. Still later, the interfaces between the
various subsystems become no longer clear at all, and there is a lot of
confusion about who is implementing which parts. Some interfaces may
then exist more than once, and some not at all.

We therefore suggest starting every project with a proper scoping,
however simple this may be. Neglecting the need to set the scope is a good
way to run into severe problems in the later course of a project.

14.4.1.2 Stakeholder and Roles

Once the scope is defined for the project at hand, the key persons must be
identified and their roles documented. We call such people that have “a
justified interest in the project” the stakeholders. What a justified interest
is depends of course on the situation and the judgement of the people

 14.4 How to use the HOOD capability model for requirements definition 231

responsible for carrying out the stakeholder identification. A more
practical definition may simply call a person a stakeholder if his or her
requirements are taken into account.

In many cases, the project management or the customer lists a number
of persons that must be taken into account. However, such lists do not have
to be complete – in fact, quite often they are not and are a suggestion
rather than some set condition. Whether there is an initial stakeholder list
or not, a good requirements manager will always consult his own judgment
and experience. The following questions may help to arrive at a suitable
stakeholder list:

• Who pays for the system?
• Who uses the system?
• Who maintains the system?
• Who is against the system?
• Who needs the system?
• Who specifies the system?
• Who develops the system?
• Who buys the system?
• Who disposes of the system?
• Who delivers the system?
• Who installs the system?
• Who develops a competitor system?
• Who controls the system?

Even if the customer or the project management believe their
stakeholder list to be complete, it is always good practice to point out
possible shortcomings and to make additional suggestions. If such
suggestions are waived, then at least this can be documented, together with
a rationale, and there will be no questions later in the project why some
persons have not been asked for their needs and wishes. In any case, the
stakeholder list needs periodical review and is usually changed throughout
a project.

It has proven helpful to document not only the stakeholder but also his
or her role. To make clear the difference: the stakeholder is the person, for
example “Peter D. Seast” or “Colin Hood-Lum”; the role is the same as the
job description of this person, for example “member of the board” or
“project manager”. An example stakeholder list is shown in figure 14.7.

Whenever we deal with a stakeholder, his role or roles will be a guide
for our aims and actions. For example, a technical director or the CEO may
have a requirement regarding the software to be used, and this requirement
should be checked. There could be company standards, a central
development platform and the like. However, it may turn out that the

232 14 The HOOD Capability Model for Requirements Definition

technical director has no opinion of the software to be used, and maybe by
proposing such a requirement he only wants to conceal the fact that he
does not know about the details of the company’s development process.

Stakeholder List

ID Name Role Importance Interviewed

SH-11

SH-2

SH-13

SH-7

SH-3

SH-6

Ian M. Barrasing Project Manager low - -

Tom Jones Sales mid 04 Sep 2006

Susan Summer Public Relations mid 12 Oct 2006

Albert Onestone Developer high 30 Feb 2007

Flash Gordon Saver of Universe high 23 Mar 2632

Roger Rapid Customer

Figure 14.7: Example stakeholder list

To know this will help spotting this requirement as very low importance
or even as irrelevant. Another example could be a first level help desk
support officer, who would like some information system to be developed
to tell him the rough schedules of the development department so as to be
able to tell the customers on the hotline when they can expect the new
version of some software. After this requirement is documented and
handed over to the analysis and review board it may be decided that the
hotline staff should have no insight into the development department’s
activities, and the requirement is thus neglected. On the other hand, if the
head of the development department wants the future system to give him
more information on schedules of the development department, this
requirement may have to be taken into account.

Thus in summary, the role of a stakeholder gives us an idea of which
kind of requirements that stakeholder may have a right to propose and
where the limits of his competence and authority are.

14.4.1.3 Engineering Requirements

For level 1 of the HCM-RD it is recommended to collect requirements
from existing specifications, see figures 14.3 and 14.4. It is part of our
experience that since requirements engineering is the critical activity, the
developers should slowly become familiar with the new philosophy of how
to look at requirements.

It is normally a good idea to take existing requirements from similar
projects to provide a very good starting point to lift off from. Even in

 14.4 How to use the HOOD capability model for requirements definition 233

companies with a very advanced and established requirements
management and engineering process this is often the first thing to do, for
almost all systems that are developed today have some predecessor and
only extend and improve what already exists.

Also, development staff must learn to distinguish between requirements
and other pieces of information. Existing specifications are perfectly suited
for this, for they usually contain a multitude of information. Figure 14.8
shows an example of a specification, which is fictitious but otherwise
believed to be quite typical.

... The flight passenger transportation system shall
conform to the regulations for safety critical airport
equipment. According to ASR 1492, this means that
the system must recognise passengers that are not
totally within the carriage. This will give rise to the
need to have light barriers. Children must be seated
during the ride, while adults may also be standing.
No extra compartment for the train guard is needed
as the train is controlled completely automatically.
The doors must close within 2 seconds. The train
does not need a power collector because it runs on
batteries. There will be at least 6 of these automatic
trains running at Bloody Hell's airport. About 2000
passengers will use these trains every day ...

Figure 14.8: Fictitious example specification with typical style

If people are told what to look for, they will quickly learn and
understand how to tell a true requirement from supporting information.
Also, reading specifications that were probably written by others will give
an impression of how easy or hard it can be to follow someone else’s ways
of thinking just by what has been documented. This will in turn motivate
people to try and write better requirements that are more clearly also to
other possible readers.

14.4.1.4 Managing Requirements

When the people involved start engineering requirements using existing
specifications, this is a perfectly suited moment to introduce more of the
basic requirements management and engineering concepts. For example,
the developers will soon find that their requirements need some structure,
just like a good book needs a table of contents and different chapters and
sections. A structure will make the requirements more readable, and also
some interesting piece of information can be extracted very much quicker
than without any structure.

Another important thing to show is the need for requirements attributes.
When the developers learn to tell requirements from additional

234 14 The HOOD Capability Model for Requirements Definition

information, they may want to mark some bits as requirements and others
as information. For example if they already decided to introduce
requirements structures, they may want to indicate headings as opposed to
requirements.

A very prominent example for attributes is a unique identifier for each
requirement and maybe also for additional information. It will soon dawn
on most of the people that talking in terms of “the last but two sentences
on page number 17, middle section” is not very efficient but ambiguous
and can cause many time-consuming misunderstandings. Showing them
that a unique identifier will save trouble and time will motivate them to
apply this concept wherever sensible.

This will automatically lead to the idea that the requirements should be
best formulated as singular entities. This is what we call atomic
requirements. After the developers have started using structures, attributes,
identifiers and so on, they may still find that too much information is
contained in one identifier. For example, one long sentence containing
three requirements could be given an identifier, but it would still not be
possible to talk unambiguously about one single requirement when talking
about this one sentence. This will motivate to try and apply a good rule of
thumb: one sentence, one requirement. A possible result of the application
of these practices to the specification in figure 14.8 is shown in figure
14.9.

ID Text Type

The system must conform to ASR
1492.

SR-23

Req.

Heading3.1 Legal regulations

SR-82

The system must recognise people
standing in the doors.SR-83

The system must use light barriers to
recognise people standing in the doors.SR-85

Req.

Req.

3.2 Passenger SafetySR-24 Heading

Figure 14.9: Improving existing specifications applying good practices

Thus if people are trained, introduced and guided properly, this can start
a chain reaction of needs and desires which when addressed, automatically
improve the quality of the requirements management and engineering
process. This can be very motivating to people, and ideally they start
wanting more and more.

 14.4 How to use the HOOD capability model for requirements definition 235

14.4.1.5 Requirements Reviews

It is one of the fundamental principles of the requirements management
and engineering philosophy to quality check every relevant piece of work
that has been carried out.

For example, in some organisations all pieces of work that are put under
configuration management must be quality checked. In other organisations
there exist lists to tell which outputs must be quality checked.

But whatever the relevant work products in an organisation are, the
principle of quality checks should be made clear right from the beginning.

It is therefore necessary even in early stages of the introduction of
requirements management and engineering processes in an organisation to
plan for analyses and reviews. The members of staff should be explicitly
told that what they create will be checked by others. This needs a lot of
social competence, for people will at first suspect that they are being
controlled. In fact, to establish the understanding and the desire for quality
reviews is probably one of the hardest parts of introducing requirements
management processes.

The following figure 14.10 shows a simple requirements analysis and
review process.

Analysis

Rework

Review Accept

Figure 14.10: Simple requirements analysis and review process

Reviews loop back on quality attributes, for it is only possible to check
for quality aspects that were agreed on beforehand. For example, we
should not check the requirements for atomicity if it has never been
mentioned before that requirements should be formulated atomically. Also,
we should not check whether the documented requirements are testable if
we never told the developers to consider this while formulating
requirements. The following figure 14.11 shows what a requirements
analysis could look like in reality.

Although it is obvious, the requirements process would come to an end
if after the review nothing more happened. Thus every review
automatically implies that the defects spotted during the review process
must be removed and the new work results must again be quality checked.

236 14 The HOOD Capability Model for Requirements Definition

Only then will the circle close and we started a continuous requirements
quality improvement process.

User Req.

UR-
701

There must be
a stop button. ok

ID Qual Text

UR-
513

There must be
a run bu

Req. Quality Criteria
• understandable?
• atomic?
• structured?
• testable?
• identifiable?

2

1

Figure 14.11: Example requirements analysis

14.4.2 Level 2: Capable

The previous sections showed how we can initiate a requirements
management and engineering process based on continuous improvement.
We explained how especially the first work results can motivate people to
go ahead with the new philosophy and thus keep the process alive.

While HCM-RD level 1 is a very important milestone indicating the
beginning of new ways of thinking and of seeing things, its (visible) results
are still limited. The process that was started is still not fully established,
and if for whatever reasons the circumstances become detrimental, the
developers may revert to their old habits. It is not until HCM-RD level 2
that the chaff is separated from the wheat.

Although there is nothing special about HCM-RD level 2, it is a big
challenge in that one cannot rest on the laurels earned with HCM-RD level
1. If there is no constant drive, the process will quickly come to a rest, and
all hitherto efforts are wasted. Thus HCM-RD level 2 is hard to tackle
because having gone through level 1, you just have to keep on running
without having a rest. Organisations that master level 2 are very well
working. It is clear that all criteria to reach level 1 automatically apply to
level 2, and thus we only have a closer look at the additional criteria to
reach level 2.

14.4.2.1 Engineering Requirements

For HCM-RD level 1, requirements must be atomic and identifiable. To
reach level 2, the requirements must conform to more quality attributes.
First, they must be understandable and unambiguous, which means that
during the specification of requirements, the developers consciously check
whether their requirements are understandable and clear to other possible
readers.

 14.4 How to use the HOOD capability model for requirements definition 237

This implies that the requirements are formulated so that the anticipated
readers will have a maximum chance to understand what is going on. It
means that requirements are not only specified in plain text, but will also
use pictures, use case diagrams, flow charts, mind maps and whatever
appears to be best suited for the various readers. Note that it could also be
a video tape with the developers demonstrating some system workflow, or
a music tape giving an idea of how some acoustic signal may sound.

Second, requirements on level 2 must be testable and realisable.
Realisability may be proven in many different ways, one of the most
common being the experience of the developers. By introducing the idea
of realisability, we try to separate requirements that will probably be
implemented from those that can and will not be implemented. This
information will later help saving time, for no effort is wasted to deal with
requirements that are irrelevant in this respect.

Testability is best proven by documenting the test that will check if a
requirement is fulfilled. The test may be documented right along with the
requirement, or in a separate test document. Whichever way is chosen, this
aspect is very important because we start to link the requirements to the
tests. An example of requirements linked to tests is shown in the following
figure 14.12.

System Tests

ST-
101

Visual inspec-
tion.

UR-701
UR-513

ID Ref.Text

ST-
24

Pushing the
button once it

UR-701

Test Res.
One button
each exists.

Machine is

User Req.

UR-
701

There must be
a stop button.

ID Text

UR-
513

There must be
a run button.

Ver. Meth. Ver. Crit.
Visual
inspection.

Existence of at
least one button.

Visual
ins

Existence of

Figure 14.12: Requirements linked to tests

This traceability between requirements and tests makes it possible to
extract valuable information. For example, by checking which requirement
has no link to a test we may find requirements that are not testable. Or it
may turn out that a test has been forgotten. Also if a test has no link to at
least one requirement, this may mean that either a link has been forgotten
to be drawn, or that this test is superfluous, for no actual requirement is
affected.

Test management or verification and validation is dealt with in detail in
chapter 10, where more information can be found. Here, it should be noted
that traceability is one of the most important gains of requirements
management and engineering.

Third, requirements on HCM-RD level 2 must be consistent, free of
redundancies and correctly derived. Consistent means that the

238 14 The HOOD Capability Model for Requirements Definition

requirements do not contradict each other. For example, no specification
should have a requirement A stating that “The button must be blue” and at
the same time have a requirement B which says that “The button must be
red”.

Consistency is closely related to redundancy. It may be desirable not to
have two or more requirements that in principle formulate the same desire.
To stick with the above example, there should be no requirement A
demanding that “The button must be blue” and some requirement C
defining that “All user interface elements must be blue”. The danger
comes mainly here with changes, when one requirement might be changed
and the other missed thus causing the set of requirements to become
inconsistent.

It is important to remove inconsistencies and redundancies because
inconsistencies will lead to inconsistent behaviour of the system to be
developed, and redundancies would have to be synchronised each time one
of the respective requirements is changed or otherwise become
inconsistent. The activity of removing inconsistencies and redundancies is
often called consolidation.

If a requirement has been correctly derived it is formulated on the
proper level of detail or abstraction. This means that the requirement does
not contain more solution than necessary on the respective level. As this is
usually a complex concept to grasp, an example may shed more light on
what is meant.

Consider a stakeholder for some car radio system. The stakeholder may
formulate the requirement that the radio system have a twin tuner. This is
already much into solution details, and trying to understand what the
stakeholder really wants may reveal that he wants traffic announcements to
be automatically checked in the background, and the only way he thinks
this is possible is by using a twin tuner.

Once this is known the requirement would then demand that traffic
announcements be automatically checked in the background, and there
could still be any solution to this requirement. Note however that it is also
possible that the stakeholder wants a twin tuner because all his friends
have a twin tuner, too. In this case, it may mean that in fact we must
implement a twin tuner, or at least stick a label to the radio that suggests
that it has a twin tuner. Not all requirements are based on technology,
some requirements have other roots.

This concept also means that on the implementation level a requirement
must be all solution and there should be no space left for interpretation. If
for the implementation a requirement states that “The colours of the
buttons must be easily distinguishable from the colour of the display” this
indicates that we are still on a level of too much abstraction. Depending on
the owner of this requirement we might call this requirement incorrectly

 14.4 How to use the HOOD capability model for requirements definition 239

derived, and for someone that has to implement the requirement it should
better read something like “The colours of the buttons must be in RGB
colour code: 132 (red), 34 (green), 202 (blue)”.

It is possible that there are only two levels of abstraction, customer
requirements and implementation requirements, but if there are more
levels as is usually the case then requirements on these intermediate levels
should have a corresponding level of abstraction. Practical doing will soon
give the necessary experience.

14.4.2.2 Managing Requirements

In addition to the criteria to reach HCM-RD level 1, the requirements must
now also be prioritised. This lays the foundation for making many pieces
of the valuable information described in the previous chapters accessible.

Once the requirements are prioritised, we can focus limited resources
and budgets on the most important aspects of a system under development,
rather than wasting time implementing mostly requirements that are only
nice to have. We dealt with these aspects in detail in the previous chapters,
especially in chapters 6 and 9, and will thus not go any further here.

14.4.2.3 Requirements Reviews

As was explained in connection with the HCM-RD level 1, all relevant
work results must be checked against the quality criteria agreed on. On
level 2, the requirements must be checked to conform to the above
mentioned quality criteria, in addition to those from level 1.

14.4.3 Level 3: Expert

HCM-RD level 3 is as good as it gets. Level 3 represents a way of thinking
that is represented by the maturity of the processes. When you have
reached level 3, your people will automatically push for continuous quality
improvement, and as long as you can address their needs and desires, this
way of thinking will stay alive. You will have measurable successes
compared to past development approaches, and your customers will be
more satisfied with your products.

Although level 3 is almost identical to level 2, one little difference will
lay open the full power of a grown requirements management and
engineering process. The magic word here is traceability between
requirements. The step from level 2 to level 3 is not easy to achieve in
practice. Here you have to be good in detail.

240 14 The HOOD Capability Model for Requirements Definition

14.4.3.1 Engineering Requirements

Only two additional quality criteria are waiting for you on HCM-RD level
3, but these are the hardest to achieve. They are completeness and
traceability to the source.

Completeness means that your technical specification be complete in
terms of the requirements. In fact, this may seem to be an impossible goal,
for we know no means to check a specification for absolute completeness.
But we can check for completeness within the needs at certain stages. The
question is “Is it complete enough”. Incompleteness can sometimes be
found out the hard way, for example if important requirements were
forgotten.

However, the goal is that an organisation tries consciously to get their
specifications as complete as is practically possible and sensible so that the
requirements are fit for purpose. Although this is probably aimed at every
time requirements are documented, our experience tells us that setting this
as an explicit goal makes a huge difference to the way the developers
specify their requirements.

The other level 3 criteria is traceability to the source. We have already
come across traceability on level 2, where we demanded that the
requirements must be linked to the tests. Now we demand that the
requirements on each level of abstraction be also linked to the
requirements on the level above. For example, all derived system
requirements must have a link to the customer requirements, and all design
requirements must have a link to the system requirements. The following
figure 14.13 shows an example where the links are created using textual
references in a dedicated attribute.

User Req.

UR-
701

There must be
a stop button.

SR-18

ID Ref.Text

UR-
513

There must be
a run bu

SR

System Req.

SR-
18

There must be
stop buttons
on each side.

UR-701
DR-59

ID Ref.Text

SR- There m

Design Req.

DR-
59

Three buttons
conforming to
ECE 192 must
be install

SR-18

ID Ref.Text

Figure 14.13: Linking between different kinds of requirements

Of course, as has been shown in previous chapters, traceability and
referencing (linking) goes far beyond only documenting the relationships
between the different kinds of requirements (user requirements, system
requirements, …). We have seen that we can and should link requirements

 14.4 How to use the HOOD capability model for requirements definition 241

also to project management, change management, risk management and so
on. A more complete picture is shown in the following figure 14.14.

Why does this open the door to so many positive effects of requirements
management and engineering? For example, this kind of traceability
allows for the check whether some user requirements have been forgotten.
If they have no link to at least one system requirement, this may mean that
the link has not been drawn or that this user requirement has not been
derived and taken into account yet. On the other hand, if a system
requirement has no link to at least one user requirement this may mean that
the system requirement is superfluous and has no justification.

As all of these advantages have been discussed in detail in the previous
chapters, we will not go into more detail here, but want to stress a point
that has already been mentioned before. The HCM-RD is no rigid law or
model layout to introduce requirements management and engineering in an
organisation, but is based on our many years of experience. It is explicitly
meant to be tailored to your individual situation and abilities. You do not
have to start with atomic requirements if the aspect of ambiguity is more
important to you. Also you do and should not wait to begin introducing the
quality criteria of higher HCM-RD levels before you have fully completed
a lower level. We repeat this very important aspect here because if you can
link requirements right from the beginning, do so. Do not wait until you
formally reach HCM-RD level 3.

System Tests

ST-
103

The buttons
must be ECE 7
instead of ECE
192.

DR-
59

ID Ref.Text

User Req.

UR-
701

There must be
a stop button.

SR-18
PR-9

ID Ref.Text

UR-
513

There must be
a run bu

SR

System Req.

SR-
18

There must be
stop buttons
on each side.

CR-701
DR-59
ST-103

ID Ref.Text

SR- There m

Design Req.

DR-
59

Three buttons
conforming to
ECE 192 must
be install

SR-18
DT-10

ID Ref.Text

Project Risks

PR-
9

Users may get
caught and in-
jured by robot.

UR-
701

ID Ref.Text

Change Requests

CR-
34

The buttons
must be ECE 7
instead of ECE
192.

DR-
59

ID Ref.Text

Figure 14.14: More linked project information

242 14 The HOOD Capability Model for Requirements Definition

14.5 Summary

This chapter introduces the HOOD capability model for requirements
definition (HCM-RD) and explains how to use it. The model is a
suggestion of how to introduce requirements management and engineering
in an organisation, applying a step-by-step philosophy rather than a big-
bang approach. It is organised with three levels ranging from getting
started to expert.

Criteria are given to assess which level an organisation has already
reached. These criteria are a suggestion based on many years of experience
in the introduction of requirements management and engineering processes
in organisations of all sizes. The criteria are not defined as being fixed but
can be tailored to the special situation and needs of any organisation.

By defining small goals people can monitor their advances. Many
milestones are all along the way and have a motivating effect on the
developers. Usually people are initially trained and then slowly made
familiar with the new development philosophy by practical doing. If they
get the necessary support, they will soon see the advantages and become
more comfortable and cooperative. Ideally, this will start a chain reaction
of more successes, more drive, faster pace, more successes and so on.
Once the inertia has been overcome, it is important not to have a rest on
things but to keep on pushing until the processes and ideas are firmly
established.

The ultimate goal is a constantly self-improving requirements
management and engineering process that is kept alive not through the
process flow charts and manuals, but through peoples’ spirit.

15 The HOOD Capability Model
for Requirements Management

The previous chapter on the HOOD capability model for requirements
definition (HCM-RD) described in detail how the processes in connection
with the development of requirements can be introduced and improved
step by step.

This chapter explains how requirements that have been created can be
managed, so that the information they represent is always up to date
throughout a project and so that the information created in the course of a
project can be used and reused in following projects.

Like the HOOD capability model for requirements definition, the
HOOD capability model for requirements management is the HOOD
Group’s standard to evaluate the maturity of an organisation with respect
to its abilities in connection with the management of requirements.

The following sections show the basics of the model and its proper use.
It is noted here that the two HOOD capability models really belong
together, for the value of requirements that are developed will quickly
deteriorate if they are not managed during the course of a project.

It is thus recommended to start the introduction and improvement of
processes in connection with requirements using both capability models
right from the beginning, rather than starting with only one of the two
models.

15.1 The structure of the HOOD capability model
for requirements management

Similar to the HOOD capability model for requirements definition, the
requirements management model can be visualised as a matrix, see figure
15.1. The matrix consists of the three levels of the HCM-RM and the
processes and information that must exist to reach a certain level.

Like before, it is noted that the following is a standard suggestion for the
focus of each level, but the model is not rigid. If an organisation needs
change management processes for requirements more urgently than
version management processes, then it would be stupid to wait until level 1

244 15 The HOOD Capability Model for Requirements Management

as shown in the following figure has been reached before proceeding any
further with the change management subject.

level 1 level 2 level 3

risk
management

change
management

configuration
and version

management

test
management

quality
management

risks are identified risks are linked to
requirements

risks are assessed and
prioritised, and counter-
measures are defined

changes are explicitly
documented

changes are documented
so that they can be traced
back

impacts of changes on
risks, configurations, ver-
sions, tests, project and
quality are documented

requirements are freezed
(baselined) as necessary,
freezes can be identified

the various freezes are
put together to give
configurations as needed

configuration and version
plan is created including
rules for baselining

key requirements are
tested and the results are
documented

verification method and
verification criteria are
documented for agreed
subset of requirements

a complete test plan with
work packages, costs and
dates is created and
linked to requirements

requirements are
analysed and reviewed
at least once

regular review and analy-
sis of requirements

regular review and analy-
sis of requirements

project
management

requirements are priori-
tised

work packages are
defined and controlled

costs are estimated,
resources are estimated,
defined and assigned

Figure 15.1: HOOD capability model for
requirements management (HCM-RM)

15.2 How to use the HOOD capability model
for requirements management

This section will make suggestions of how to use the HOOD capability
model for requirements management and will detail each level. Similar to
what has been said in connection with the HOOD capability model for
requirements definition, the different levels of the HOOD capability model
for requirements management shown in figure 15.1 can and shall not be
strictly separated from each other.

Also, as mentioned before, the model is not rigid in view of the contents
of each level. For example, an organisation that produces only two kinds
of ball pens, one standard ball pen and an exclusive ball pen of high
quality for businessmen, will have less to do with risk management than an
organisation producing explosives. Thus the model can and should be
tailored to the needs and specific situation of each individual organisation.

This implies that different organisations may not be directly comparable
by their HCM-RM level, for the same level may contain different subjects

15.2 How to use the HOOD capability model for requirements management 245

and mean different things in each organisation. However, the overall
maturity remains very well comparable using the HCM-RM, for normally
the levels are tailored such that they approximately demand the same effort
to be reached.

15.2.1 Level 1: Getting started

Although level 1 of the HOOD capability model for requirements
management demands only activities which most organisations already
carry out, it formalises these activities and thus takes out possible
randomness.

This is especially true since the model naturally depends on every result
to be properly documented, and this little detail makes all the difference to
the way organisations usually work.

15.2.1.1 Risk management interface

To reach HCM-RM level 1 with regard to the interface to risk management
it is sufficient to identify possible risks. The risks are documented in a
suitable way, for example with an identifier, a short name and a
description, see figure 15.2.

Risks

R - 12

In manual control mode, the
operator may move the robot
so that it hits other objects
including people.

Robot
operation

ID Short NameDescription

R - 5
There may be high voltage
in the cables when the oper-

Author, Date

Steve Miller,
21 Aug 2005

Figure 15.2: Risk management information to reach HCM-RM level 1

Besides the information suggested above, there should also be of course
such information like author and date of creation as shown in figure 15.2.
These data are basic standard and are not specifically associated with risk
management, but they are always assumed to exist even when not
mentioned explicitly.

There are many organisations that have a good feeling for possible risks,
and this feeling is usually based on sound experience from many projects.
Often, this feeling or experience is concentrated onto only a few or even
only one developer or senior staff, and there exists nothing reproducable
apart from the intuition of these key people.

246 15 The HOOD Capability Model for Requirements Management

This is quite typical, and starting a risk documentation even as simple as
shown in figure 15.2 starts to make the knowledge accessible and
reproducable. For example, with a simple list as shown above, it is
possible to create a checklist for future projects, thus making sure that
none of the most important possible risks may be forgotten in a current
project.

Such a checklist can then be continuously improved, making it more and
more complete and valuable from project to project. If the above
mentioned key persons having the risk knowledge then leave the
organisation, other people have something to take over and to start with,
rather than having to begin from scratch.

15.2.1.2 Change management interface

Level 1 of the HOOD capability model for requirements management
demands that each change be explicitly documented. This means that a
change must be identifiable as a change, and in our experience this is in
contrast to the established way in which many organisations work.

It is quite common that people change such things as requirements texts,
names or dates according to current needs. They make changes just like
this and leave it to the reader to find out if and when they have changed
something. Without such a concept like baselining and freezing, it is often
impossible to trace back changes.

For example, a Powerpoint file could contain vital project information
such as an electronic schematic. If the file is changed by some user and
saved with the same name, nobody can recover its old state.

In this connection it is interesting to note that even if the people that
make changes in such a way get confused themselves because they cannot
keep all the changes they have made and their effects in mind, they usually
still refuse to adopt a more efficient way of working. And it is also
interesting how quickly one can loose track even of a very small number of
changes if nothing is documented.

Therefore, level 1 of the HCM-RM demands explicit change
documentation, rather than implicit change information which could for
example be a more recent file time stamp in your operating system.
Remember that there are quite a few people who would point you to such
things as a new file time stamp to prove that the changes they have made
are obvious.

Explicit change documentation can be very simple to start with, but it
will be very effective nonetheless. With regard to requirements, one could
start a change documentation by striking out the current version of a
requirement and adding a new version with author and date, see figure
15.3. The same concept is applicable for changes in the risk management

15.2 How to use the HOOD capability model for requirements management 247

data, the configuration and version management data, the test management
data, the quality management data and the project management data. If
software tools are used that automatically document changes, then the
explicit documentation of changes may be superfluous, but sometimes an
automatic change documentation is so intricate to use that it is still
desirable to document changes as proposed.

User Req.

UR-
701

There must be
3 stop buttons.

ID Text

There must be
5 stop buttons.

Author
J. Johnssonson,
03 Mar 2007
U. Looser,
01 Apr 2007

UR-
513

There must be
a run button.

C. Sid

Figure 15.3: Explicit change documentation to reach HCM-RM level 1

Although the effort for documenting changes in the proposed way is
very small compared to the benefits this will create, it is our experience
that the documentation is often neglected and vital change information gets
lost.

15.2.1.3 Configuration and version management interface

To reach the HCM-RM level 1, configuration and version management
only has to make sure that freezes or baselines of vital information are
drawn as necessary and can be identified.

This means that for the most important milestones, the project data are
copied and stored away so that they can be recovered if necessary. For
example, the first set of approved user requirements should be carefully
freezed before the user requirements are developed further, using a typical
name such as “user requirements approved V1.0” or the like. Thus level 1
really aims at introducing a version management, while the configuration
aspect is put back until level 2.

To many readers it may seem natural to do this, but quite frequently
vital information gets lost because data are changed, improved and further
developed without having made a freeze in between. Getting back on the
above example, the “user requirements approved V1.0” can never be
recovered if they are not stored away immediately, or still worse, people
do not even know that there has once existed or that there should exist
something like a first version of approved user requirements.

It can be seen from this that configuration and version management is
closely related to change management. While change management tries to
ensure that the evolution of information can be traced back through all
stages to the origin, configuration and version management tries to ensure

248 15 The HOOD Capability Model for Requirements Management

that every piece of information, including the various instances of changed
data, belongs to at least one entity with an individual version and
configuration identifier.

Level 1 of the HOOD capability model for requirements management
initially creates awareness of the necessity to have freezes or baselines at
various stages during a project. The benefits of having freezes usually start
to show rather quickly, especially when there are more than only a few
people involved in the project so that it cannot be assumed that everyone
always knows what all the others are doing.

The following figure 15.4 sketches how a simple version management
to reach HCM-RM level 1 could look like.

Figure 15.4: Simple version management to reach HCM-RM level 1

It is seen from the above figure that a lot of information can already be
put into a good file name. Together with a short description of what each
file actually means, the example shows how a simple but nonetheless
working version management can be set up.

15.2.1.4 Test management interface

Regarding the interface of requirements definition to test management,
level 1 of the HOOD capability model for requirements management is
reached if “key requirements are tested and the results are documented”.

This phrase is rather vague, and deliberately so. A test manager who is
faced with the task to reach level 1 must answer a couple of questions
before he can proceed any further:

• What is a key requirement?
• How must a requirement be tested?
• How and where shall the results be documented?

15.2 How to use the HOOD capability model for requirements management 249

The first question makes it necessary that the requirements be classified
in view of their importance and / or urgency. Although a requirement
could be a key requirement with regard to tests only and otherwise just a
normal requirement, this assessment will usually be related to the
classification of the requirements from the viewpoint of project
management.

From figure 15.1 and the above explanation it can thus be seen that
HCM-RM level 1 for the test management interface goes hand in hand
with level 1 for the project management interface, which demands that
requirements be prioritised.

The second question given above creates awareness for the fact that
tests must be planned for in a number of different ways. The “how” not
only indicates that for example test equipment must be purchased if
necessary. What is more important is the fact that a test manager must
decide what to do in order to find out whether a requirement is met or not,
even if all necessary equipment is already there. For example, a software
module could be tested to work according to the specification by letting it
run 10 hours without a break and see whether there would be any errors.
Thus the “how” also implies that people already think of the verification
method and the verification criteria, without explicitly saying so.

The third question of the above list could be assumed to be quite simple
to answer, but once people start to document their tests they usually find
out that this is not at all a trivial thing to do. In a first approach to HCM-
RM level 1, the documentation could be as simple as “passed” or “failed”
in a test column or attribute within the requirements document.

But as the documentation of the verification method and verification
criteria is left to level 2, it will soon be realised that such a result really has
little meaning on its own. Just by reading the result one cannot know what
exactly it was that was tested, or how.

One way to meet this problem is to document the tester together with
the result. It is then possible at least to address the respective tester if any
questions arise and ask him or her what has been done and how and why
and use their specific knowledge. However, this is only possible if the
organisation aiming to reach HCM-RM level 1 acknowledges that tester is
a role to be assigned to someone, rather than a job that must be done by
anyone who can momentarily spend a few minutes.

This in turn prepares the stage for the suitable definition and assignment
of work packages, which is necessary to reach HCM-RM level 2 for the
project management interface. Again, it can be seen how all the different
interfaces on all the various HCM-RM levels mesh with each other.

The following figure 15.5 shows an example of a test management
interface for HCM-RM level 1.

250 15 The HOOD Capability Model for Requirements Management

User Req.

UR-
701

There must be
a stop button.

ID Text

UR-
4

The current
must be 15A.

Res. Tester, Date

Pass John Wine,
12 Aug 2005

Pass

IsKey

Yes

UR-
34

UR-
35

UR-
96

The noise must
be < 40dB.

The run button
must be green.

There must be
a run button. Yes

Richard Nickson,
7 July 2005

No

No

Yes

Figure 15.5: Example test management interface for HCM-RM level 1

The “IsKey” attribute or column in the above figure could be waived if
there is the agreement that the column “Res.” is only filled in for the key
requirements (which makes sense), but there may be situations when it is
good to have these two pieces of information separated. Note also that the
test information could also be stored separated from the requirements, as
shown for example in figure 10.7.

15.2.1.5 Quality management interface

Level 1 of the HOOD capability model for requirements management is
reached by at least once analysing and reviewing all relevant (valid)
requirements.

It is our experience that although the task sounds simple enough and
although the result of a requirements analysis and review is clearly
desirable, many organisations fail at this point. One possible reason for this
is the fact that practically nobody wants to be corrected. Therefore people
try to find a way to avoid having to put their work to the test. Another
quite popular reason is the lack of resources. There are a lot of
organisations that are happy if the requirements are specified at all, let
alone analysed and reviewed.

If resources are available and people are open for improvements on their
pieces of work, organisations can still fail because of the lack of
knowledge to properly carry out requirements analyses and reviews. From
what has been said in the previous chapters on the interface to quality
management it is clear that a proper analysis and review cycle is far from
being a trivial thing.

To allow for a proper analysis and review, an organisation or project
must first assign resources. That means that time and / or money must
explicitly be planned for right from the beginning. In parallel to or shortly
after this, the quality criteria to be checked for must be agreed on. It was
mentioned before that it makes no sense to carry out a review with both the
author of the requirements and the reviewer not knowing what to check
for.

15.2 How to use the HOOD capability model for requirements management 251

When the quality criteria are agreed on and made known to all people
involved, the authors of the requirements can start their work. As the
requirements are specified one by one, the people responsible for the
analysis can start to check them with respect to the quality criteria.

After the analysis, the members of the review team have to decide what
to do with each requirement. In our experience it will then soon become
clear that it is usually impossible to improve every single requirement, as
this would consume too much time and money. Rather, only those
requirements that are more important than the rest are looked at in more
detail. In other words, it must be decided whether a requirement is so
important that the extra work to improve its quality is acceptable or
whether it is not.

This touches again on the HCM-RM level 1 for the project management
interface, or more precisely, the fact that requirements must be prioritised
to reach level 1. Like before, it is seen how all pieces of the requirements
management puzzle come together to give one single consistent picture.

Figure 15.6 sketches an example of how the quality management
interface for reaching HCM-RM level 1 may look like in a requirements
specification.

User Req.

UR-
701

There must be
a stop button.

ID Text

UR-
4

The current
must be 15A.

Review

Accepted

Analysis

UR-
34

UR-
35

UR-
96

The noise must
be < 40dB.

The run button
must be green.

There must be
a run button.

Not clear: which
current is meant? Rework

Accepted

Not precise: what
does "green" mean? Accepted

Figure 15.6: Example quality management interface for HCM-RM level 1

15.2.1.6 Project management interface

The most important contribution of the interface to project management to
reaching level 1 of the HOOD capability model for requirements
management is that the requirements are prioritised.

It was shown in the previous sections how the interfaces to other
systems engineering disciplines or other parts of the requirements
management rely on the requirements to be classified with regard to their
importance and / or urgency. If this information is missing, it is hard or
impossible for example to choose the requirements that should be tested or
to decide whether a requirement is worth reworking or whether it is not.

Prioritising requirements is one of the most simple and at the same time
one of the most difficult things to do. It is very simple because in principle

252 15 The HOOD Capability Model for Requirements Management

everyone can rush through a set of requirements and put a “low”, “mid” or
“high” mark to it in a relatively short amount of time. Then again it is very
difficult because the result of such a classification is different for each
different assessor.

It will thus be necessary to have a team of reviewers with similar
viewpoints and opinions, and to allow for discussions to find
compromises. There may also be a psychological aspect to the
classification, for authors of requirements could feel pleased to have as
many of their requirements classified as being of high importance as
possible. Cases are known where soon after the introduction of an
importance attribute, all requirements were classified as being of high
importance. It was then decided to change to the three categories “high”,
“very high” and “extremely high” in order to get more sensible results.

The fact that many activities of requirements management rely on the
requirements to be prioritised should remind everyone of the importance of
this activity. Prioritising requirements should not be mistaken for putting
some sign on them which may make them look more or less interesting.
Rather, the success of a project can depend on a sensible classification of
the requirements.

It is no use to mark every requirement as being of high importance, just
like it is no good to have no highly important requirement at all. There are
organisations that work with a rough percentage for each category. For
example, there must be no more than 5% of all requirements that are
classified highly important.

We rely on common sense to arrive at a due distribution. For example, if
only requirements are marked highly important that are absolutely vital
and without which the system under development will not properly work,
then the number of highly important requirements should automatically
approach a sensible value. If it does not, there may be some
misunderstanding on part of the reviewers or the project managers, and
this needs clarification.

15.2.2 Level 2: Capable

Similar to the HOOD capability model for requirements definition, HCM-
RD, the HOOD capability model for requirements management may
appear to produce only very limited visible results on level 1.

However, starting to document all relevant information in a suitable way
is a milestone in many organisations. If people feel that there is a benefit in
working that way the step to level 2 will be small, but nonetheless
challenging.

15.2 How to use the HOOD capability model for requirements management 253

15.2.2.1 Risk management interface

On level 2 of the HCM-RM, the risk management interface must provide
links to the requirements. Although linking is a simple concept as such, the
creation and maintenance of links turns out to be one of the most
challenging activities in requirements management in practice.

One possible reason for this could be the time it takes to properly create
and maintain the links. It is usually not sufficient to create the links once
and never touch them again. Every time something has been changed or
created anew, existing links must be checked for whether they are still
valid, and new links may have to be drawn between new pieces of
information. This problem also depends on the tools that are used to
manage requirements. For example, some tools offer functionality to
support the linking of pieces of information. But a number of tools such as
WORD or Excel, which are also frequently used for requirements
management, cannot provide such functions, and the only practical way to
draw and maintain links is using textual references. This may take more
time than drawing links for example in a graphical drag-and-drop way.

Another possible reason is the fact that quite frequently there is no clear
concept within an organisation of how to draw links between the various
pieces of project information. Simply linking everything to everything can
soon turn out to be counterproductive, and people could get lost in the
flood of information.

As no more details of how the linking between risks and requirements
should look like are given in the HCM-RM for level 2, one example of
how this can be achieved is given in figure 15.7. It is noted that in the
figure the link could either be the textual references as shown, or the arrow
representing some tool supported way to link the two sets of data.

Requirements

R-
701

There must be
a stop button.

PR-
18

ID Ref.Text

R-
513

There must be
a run bu

SR Project Risks

PR-
18

Users may get
caught and in-
jured by robot.

R-
701

ID Ref.Text Author, Date

Pete Wheeler,
9 Sep 2005

Figure 15.7: Example risk management interface on HCM-RM level 2

15.2.2.2 Change management interface

To get from HCM-RM level 1 to level 2 with respect to the interface to
change management, changes must not only be explicitly documented, but
they must be documented so that they can be traced back.

254 15 The HOOD Capability Model for Requirements Management

The most important impact of this is that in contrast to level 1, there
must now be a documented reason for a change. As can be seen from
figure 15.3, changes are identifiable as changes on HCM-RM level 1, but
there is no justification as to why the change was made at all. The
following figure 15.8 will therefore look more complete than figure 15.3,
and the information provided here is definitely more valuable than before.

User Req.

UR-
701

There must be
3 stop buttons.

ID Text

There must be
5 stop buttons.

Author
J. Johnssonson,
03 Mar 2007
U. Looser,
01 Apr 2007

UR-
513

There must be
a run button.

C. Sidwell,
07 M

Change rationale

Standard EU-7031c
demands 5 buttons.

Figure 15.8: Example change documentation on HCM-RM level 2

Further aspects of the change traceability could be thought of. For
example, having a change rationale you are only one step away from also
having an additional column or attribute “approved” or similar. This
implies the existence of something like a change control board, people
who are competent to approve or reject a change request (which could of
course be the authors of the requirements themselves).

Another possible impact of the change rationale column or attribute is a
more complete linking of the different pieces of project information. For
example, a reason for a change could be the fact that somewhere else
something has changed, say a new possible risk has been discovered. The
rationale would then point at the change in the risk management document
to justify the change in the requirements document, thus linking these two
otherwise dissociated pieces of information and making the data more
complete and more valuable.

The reader may feel as though with respect to the change management
interface, levels 1 and 2 of the HOOD capability model for requirements
management should be taken at once. It is true that from the point of view
of effort, there is only little difference between the two levels. And it is
also true that people must have a reason to change anyways, so that there is
no additional work involved in creating the necessary information. It is our
experience however that compared to the way many organisations work
today, meeting the requirements of HCM-RM level 1 for the change
management interface would already be a significant improvement.

15.2 How to use the HOOD capability model for requirements management 255

15.2.2.3 Configuration and version management interface

It has been mentioned further above that HCM-RM level 1 for the
configuration and version management interface focusses on introducing a
version management, while the configuration aspect is addressed at level
2.

The following figure 15.9 gives a rough idea of what your project
information could look like after you have met the requirements of HCM-
RM level 1.

User
Reqs

V1

User
Reqs

V2

User
Reqs

V3

System
Reqs

V1

System
Reqs

V3

System
Reqs

V4

Design
Reqs

V1

Design
Reqs

V2

Desgin
Reqs

V5

Figure 15.9: Version management information on HCM-RM level 1

It can seen from the above figure that the different versions of project
data exist and can be identified and recovered, but have otherwise nothing
to do with each other. It is on level 2 that the relationships between these
sets of data are established and maintained and given a name or label. One
such name or label is then called a configuration. Figure 15.10 sketches the
step from versions to configurations.

User
Reqs

V1

User
Reqs

V2

User
Reqs

V3

System
Reqs

V1

System
Reqs

V3

System
Reqs

V4

Design
Reqs

V1

Design
Reqs

V2

Desgin
Reqs

V5

Configuration A

Configuration B

Configuration C

Figure 15.10: Configuration management on HCM-RM level 2

As one or more versions of each set of requirements are put together to
form a logical entity called a configuration, they are no longer isolated

256 15 The HOOD Capability Model for Requirements Management

from each other. Thus for example changes within one version of a set of
requirements may mean changes to other sets of requirements belonging to
the same configuration. Again, it can be seen how closely change
management and configuration and version management are related.

15.2.2.4 Test management interface

With respect to the interface to test management, level 2 of the HCM-RM
is the logical extension to level 1. It has been shown before how the test
people have to prioritise the requirements in order to be able to mark key
requirements for testing. It has also been explained that the testers must
have an idea of how to test the key requirements, even if this information
must not be documented on level 1.

Level 2 closes this gap in the information. At first, there must be an
agreement between all relevant project members on which requirements to
test. This is similar to the concept of key requirements on level 1, but it is
assumed that compared to level 1, a significantly higher percentage of
requirements is tested, and as there should then be nothing special about
the requirements to be tested any more, they are no more called key
requirements.

After the requirements to be tested are defined and agreed on by the
relevant people, the verification method and verification criteria must be
documented for each of these requirements. The result of this process
could look similar to the example presented in the following figure 15.11.

User Req.

UR-
701

There must be
a stop button.

ID Text

UR-
4

The current
must be 15A.

Res. Tester, Date

Pass John Wine,
12 Aug 2005

Pass

Test

Yes

UR-
34

UR-
35

UR-
96

The noise must
be < 40dB.

The run button
must be green.

There must be
a run button. Yes

Richard Nickson,
7 July 2005

No

No

Yes

Visual
inspection.

Existence of at
least one button.

Visual
inspection.

Existence of at
least one button.

Ver. Meth. Ver. Crit.

Fail Patricia Munch
15

Figure 15.11: Example test management information on HCM-RM level 2

In figure 15.11, the “Test” column replaced the “IsKey” column from
figure 15.5, to make clear at this point that we do not talk about key
requirements any longer but simply about requirements to be tested. Like
before, this column could be waived if there is an agreement that the
“Res.” Column is only filled in for the requirements that must be tested,
but there could be reasons why it would be desirable to have these pieces
of information separated.

15.2 How to use the HOOD capability model for requirements management 257

As already mentioned in connection with figure 15.5, the test
management information shown in the above figure could of course also
be stored and maintained separated from the requirements data, see for
example figure 10.7.

15.2.2.5 Quality management interface

Regarding the quality management interface, levels 2 and 3 of the HOOD
capability model for requirements management differ from level 1 only in
that the analysis and review of the existing requirements must be carried
out repeatedly and continuously, rather than only once.

There are however a few implications to this. First, with regular
analyses and reviews it is no longer possible to carry out this activity just
when it seems comfortable to do so. Rather, there must be a plan or at least
an idea of how to regularly carry out the analysis and review cycles during
the course of the project.

Second, as this is no longer a single activity, resources must be
explicitly assigned and planned for. This usually means that there is a
special group of people that will carry out the analyses and reviews, and
this group normally does not change during a project.

Third, as it is typically impossible to go through all existing
requirements in every analysis and review cycle, the relevant people have
to devise efficient ways of dealing with rework, re-reviews, changes and so
on.

Last but not least, an official commitment to repeated analyses and
reviews may lessen the natural resistance of the relevant requirements
developers or authors against their work being quality checked and
reviewed. The reason for this is that multiple analyses or reviews indicate
that the quality management is an ongoing process, rather than something
special where all work is being put to the test at once. With this concept in
mind, analysis and review results will be seen as constant suggestions for
improvement, not as a single assessment.

15.2.2.6 Project management interface

On level 2, the HOOD capability model for requirements management
demands the definition of work packages and their control. There are quite
a few implications associated with this, and thus with respect to the project
management interface, the step from HCM-RM level 1 to level 2 is
anything else but simple.

In order to be able to define work packages, a number of different tasks
have to be carried out beforehand. First, an overview must be created of all
necessary activities, and this must be done on each level of detail of the

258 15 The HOOD Capability Model for Requirements Management

project management plan. The planning will usually reach a certain level
of detail before the estimates can be assumed to be precise enough to be
relied on. One of the effects of this is that such a detailed planning will
minimise the risk of forgetting major or key activities, and will provide a
good basis for any other estimates such as resources consumption.

Second, all the identified tasks or pieces of work on one level of detail
have to be classified applying sensible and meaningful categories.
Examples of such a classification could be sales activities, project
management activities, requirements management activities and so on.
There is no ready recipe for carrying out this classification, and it will
heavily rely on the experience of senior staff and project managers. Project
management plans from similar predecessor projects may provide an
excellent starting point for the people faced with this task.

After the classification of all known necessary activities on one level of
detail is finished, each class must be split up into pieces that form logical
units and that may not exceed a certain size. Again, experience is
mandatory for splitting the classes properly up into suitable chunks.

The logical units created this way may be called work packages on the
different levels of detail. For example, on a very high level of the project
plan the work packages could be “Define requirements”, “Develop
system”, “Test system” and “Deliver system”. On a very low level, typical
work packages could be “Draw schematic”, “Paint housing” and “Wire
transformer”.

After the work packages are defined, they have to be controlled. This
means that project management has to check repeatedly whether the
individual pieces of work are actually carried out. The normal way to do
this is by using metrics and other information such as personal talks and
the like. Thus although the tasks sounds quite basic and rather simple,
project management has to decide how the project progress can be
measured and the results visualised and what actions should be taken if
one of the indicators approaches a critical value.

The following figure 15.12 shows an example of a project management
plan with work packages on a comparably high level.

Project Plan 2007

May July June AugustApril

Construction
of frame
Construction
of housing

Develop
mechanics

Develop
software

Figure 15.12: Example project management plan with work packages

15.2 How to use the HOOD capability model for requirements management 259

15.2.3 Level 3: Expert

Similar to level 3 of the HOOD capability model for requirements
definition, level 3 of the HOOD capability model for requirements
management represents the top of what can be reached. Level 3 is a
philosophy, rather than some level of maturity. Level 3 is what every
organisation should aim for in order to reach what is possible. An
organisation on HCM-RM level 3 will constantly produce an extremely
high quality.

15.2.3.1 Risk management interface

With respect to the risk management interface, the highest level of the
HCM-RM is reached when the risks are assessed and prioritised and when
possible countermeasures are defined.

This goes hand in hand with the project management activities, because
for a proper assessment and prioritisation of the risks, resources must be
assigned, and there must also be resources in case of a danger when
countermeasures have to be carried out.

The assessment and prioritisation of the risks makes it necessary that the
impacts of each risk are roughly known or can be estimated. This in turn
will only be possible if there are enough links between the various pieces
of project information so that impact analyses can be carried out.

The risk management information will only be up to date if the risk
analyses are carried out repeatedly, and this is necessary as the risk
information feeds back into project management and planning. For
example, there could be risks that are estimated to be very high with an
immense possible impact on the project success but that are only relevant
at the beginning of the project. Once the project has passed through the
initial phase and reached a stable status, the risk no longer exists and it
would be most desirable to free any resources that have been allocated in
order to address the risk if this turns out to be necessary.

Project Risks

PR-
71

Voltage could
be too high.

ID Text

PR-
14

Operator may
get injured.

Author, Date
John Wine,
12 Aug 2005

Ref.

UR - 12

PR-
188
PR-

3
PR-
96

Speed exceeds
the legal limits.

Project may
be cancelled.

System may be
delivered late.

UR - 66
UR - 67

Richard Nickson,
7 July 2005

UR - 37

UR - 105

UR - 3

High 1) Add fuse
2) Add resistor
1) Restrict robot work range
2) Add safety bars

Priority Countermeasure(s)

Patricia Munch,
15 July 2

Roger Rabbit,
21 June 2005

John Wine,
23 June 2005

High

Low

Mid

Renegotiate with customer

Show management the im-
portance of the

Figure 15.13: Example risk documentation on HCM-RM level 3

260 15 The HOOD Capability Model for Requirements Management

Figure 15.13 shows how the risk management information may look
like on HCM-RM level 3.

15.2.3.2 Change management interface

On HCM-RM level 3 the change management information is complete in
that all impacts of changes on all the other systems engineering disciplines
are documented. This makes it necessary of course that the changes are
assessed and all linked information is traced back for the impact analysis,
see the following figure 15.14.

Project Plan 2007

May July June AugustApril

Project Risks

PR-
9

Users may get
caught and in-
jured by robot.

UR-
701

ID Ref.Text
Configurations

Con-
1

The buttons
must be ECE 7
instead of ECE
192.

DR-
59

ID Consists of
System Tests

ST-
103

The buttons
must be ECE 7
instead of ECE
192.

DR-
59

ID Ref.Text

User Req.

UR-
701

There must be
a stop button.

SR-18
PR-9

ID Ref.Text

UR-
513

There must be
a run bu

SR

System Req.

SR-
18

There must be
stop buttons
on each side.

CR-701
DR-59
ST-103

ID Ref.Text

SR- There m

Design Req.

DR-
59

Three buttons
conforming to
ECE 192 must
be install

SR-18
DT-10

ID Ref.Text

Change Requests

CR-
34

The buttons
must be ECE 7
instead of ECE
192.

DR-
59

ID Ref.Text

Figure 15.14: Change traceability using linked data on HCM-RM level 3

It is seen from the above figure that the quality of impact analyses for
changes or change requests depends practically only on the density of the
links between the various pieces of information. Thus in order to be able to
reach level 3 of the HOOD capability model for requirements
management, there must be a significant amount of project data
connections.

It is clear that only project information organised in the proposed way
allows for the impact of changes to be assessed on a reliable basis, but in
our experience only a very limited number of organisations reach such a
level of professionalism with regard to requirements management.

One reason for this is the effort it takes to create and maintain the
project data. As has been mentioned before, the information links are not
created only once, but must be checked and modified on a regular basis.

15.2 How to use the HOOD capability model for requirements management 261

For many organisations, this appears to be too much time and money to
invest in an activity with a seemingly unimportant outcome.

Another reason is often the lack of knowledge. Creating and
maintaining project information as shown in figure 15.14 is far from being
trivial, and a considerable number of otherwise well-reputed organisations
fail in establishing the necessary processes.

A third reason is the psychological aspect that has also been mentioned
before. Well organised project data will make activities and results more
transparent, and this is inevitably connected with the people carrying out
the activities becoming more transparent, too.

15.2.3.3 Configuration and version management interface

For HCM-RM levels 1 and 2 to reach it is sufficient to have versions and
configurations as explained before. However, these versions and
configurations may still be random in that they are created as appears
necessary or logical.

This means for example that up to the point of time when some version
or configuration is created, nobody knew that there would be such a
version or configuration. This is unsatisfactory from a number of
viewpoints.

First, the efforts and activities to reach a certain stage that may be
freezed cannot be focussed because the goal is not known beforehand.
Second, deviations of the actual project state from initial project plannings
are harder to spot as it cannot be checked whether some stage should have
already been reached or not. Third, the fact that the project has reached a
milestone or an important stage may be missed because no one knows
what to look for.

Version / Configuration Plan

1

Jun05 Aug05 Sep05 Oct05Jul05

1 Customer Requirements V1, product "Professional"

2 2 Customer Requirements V2, product "Standard"

3 3 System Requirements V1, product "Professional"4
4 System Requirements V2, product "Standard"5
5 Design Requirements V1, product "Professional"1
1 Configuration "Professional" V1, consists of 1 3 5

Figure 15.15: Example of an version and configuration plan

Thus on level 3 of the HCM-RM there must be an initial version and
configuration plan and a policy for drawing baselines and making freezes.
It can be seen that this is closely related to the project management
activities, as the version and configuration planning will be connected to

262 15 The HOOD Capability Model for Requirements Management

deliverables and project milestones. One example of an initial version and
configuration plan is shown in figure 15.15.

It is clear that an initial version and configuration plan as shown in the
above figure needs regular updates and checks, and quite often the initial
dates will turn out to be impossible to meet. However, the value of such a
planning must not be underestimated.

One of the main benefits of a version and configuration planning is the
fact the project members must develop a rough idea of which milestones
exist and how these will approximately be reached in terms of time and
effort. Thus this planning goes hand in hand with the general project
management planning and helps people not to forget some important
activities or project results.

It is seen from figure 15.15 that planning will support project managers
in prioritising activities and focussing efforts if necessary. By contrast, a
collection of versions and configurations that came into existence more or
less randomly, see figure 15.10, does not allow for any predictions of the
future. With only figure 15.10, a project manager would be lost if he had to
decide which activities to carry out next in order to complete the next
necessary configuration.

15.2.3.4 Test management interface

Similar to the other systems engineering disciplines interfaces, there is a
clear development of the test management interface from level 1 of the
HOOD capability model for requirements management through level 2 to
level 3.

On level 1 we suggested that a certain number of requirements are
labelled as being key requirements, that these are tested and that the test
results are documented. We have seen how the people responsible for the
tests will begin to answer important questions when they start trying to
satisfy the requirements to reach level 1.

On level 2 we added the idea that the verification method and
verification criteria are documented for those requirements that should be
tested.

Level 3 now requires that there is a proper test plan including work
packages, costs and a time table, and the test plan must be linked to the
requirements. figure 15.16 shows how this may look like.

The test planning is part of the overall project planning, and valuable
information will be exchanged and reused between the various project
plans. It is thus seen once more how the HCM-RM makes sure that step by
step all relevant project data will mesh with each other so as to create
maximum benefit.

15.2 How to use the HOOD capability model for requirements management 263

User Req.

UR-
701

There must be
a stop button.

SR-
18

ID Ref.Text

UR-
513

There must be
a run bu

SR

System Req.

SR-
18

There must be
stop buttons
on each side.

CR-701
DR-59

ID Ref.Text

SR- There m

Design Req.

DR-
59

Three buttons
conforming to
ECE 192 must
be install

SR-18

ID Ref.Text

Dec05 Jan06 Feb06 Mar06Nov05

Requirements for Testing

UR V1
SR V1
DR V1
UR V2

Version Requirements to test

... ...

701, 212, 314, 71, 5, 96

5, 212, 314, 129, 143, 166
59, 77, 134, 116, 8, 37, 104
18, 23, 88, 113, 3, 92, 301, 72

Work
package

Cost
Estimate

UR V1
SR V1
DR V1

10,000 $
15,000 $

7,000 $
... ...

User
Req. V1

System
Req. V1

Design
Req. V1

User
Req. V2

System
Req. V2

Test Costs

Test Plan

Figure 15.16: Example test plan information on HCM-RM level 3

This is the reason why we have deliberately excluded the planning of
resources for testing. Resources may be assigned by a central project
management, but the information provided by test management planning
will make it easy for project managers to estimate the necessary resources
consumption and to plan for this in due time.

It is of course clear that like all other project plans, the test plan must be
maintained and updated regularly, otherwise the information represented
by the plan will sooner or later be of very low quality. We point out again
at the fact that working with old information that has not been updated on
a regular basis can be much more dangerous than starting from scratch of
making estimates as necessary, based on the current project status.

15.2.3.5 Quality management interface

It has been mentioned before that there is no difference in level 2 and level
3 of the HOOD capability model for requirements management with
regard to the quality management interface, and the most important aspect
here are requirements analyses and reviews on a regular basis.

15.2.3.6 Project management interface

On the last level of the HOOD capability model for requirements
management, project management has to provide costs and resources
information. This means that the information about work packages that has

264 15 The HOOD Capability Model for Requirements Management

been created on level 2 is now enriched by the information what each of
these work packages will cost to carry out and by whom this will be done.

The following figure 15.17 gives an impression of how a project
management plan on level 3 could look like.

Project Plan

Mar06 Apr06 May06 Jun06Feb06

Project Resources

Mar06 Apr06 May06Feb06

Mark

John

Franky-
Baby

P1 80%
P3 40%

P2 100%

Holiday

Holiday

P4 50%
P5 50%

P2 100%

P2 100%

P1 70%
P3 20% P3 100%

...

...

...

Project Budget

Title Planned Actual

Work Package 1 15,000 9,000

Work Package 2 33,000 34,000

Rest

6,000

-1,000

...

Figure 15.17: Example project management plan for HCM-RM level 3

It can be seen that this plan looks much more complete and the
information represented by it much more valuable in comparison to the
example project management plan shown in figure 15.12 to reach HCM-
RM level 3.

The planning of costs will make sure that there is a basis for the
prioritisation of work packages and activities, for example if the project
runs short of budget and some tasks therefore have to be waived. It will
also ensure that weaknesses of planning and obstacles that were not
anticipated beforehand can be identified and focussed. It is quite common
in some organisations for example that a project runs out of money before
it is finished, but nobody knows exactly where all the money has gone or
where more money than originally intended has been spent.

The planning of resources also allows for the prioritisation of activities
if this turns out to be necessary. For example, key staff and specialists may
not be available all the time. In such a situation a project manager may
choose to start with the most important activities where the most

 15.3 Summary 265

experienced members of staff have to be present, and only then continue
with the activities that could also be carried out by less senior project
members.

Besides this, the planning of resources will also make sure that for each
work package there is someone responsible, someone that can be asked if
questions arise. This touches upon the psychological aspects of project
management. In real life it can be observed every day that if some task is
not explicitly assigned to someone, no one will feel responsible and no one
will be able to tell anyone anything about the task.

Another aspect of both cost and resources planning is that it can provide
input for risk management. For example, in a critical project it may be a
significant risk that key staff could become ill or leave the company.
Another example are very costly activities or work packages that may only
be carried out if the customer is willing to continue with the project. This
is clearly a risk from more than one point of view.

15.3 Summary

The present chapter gives an introduction to the HCM-RM, the HOOD
capability model for requirements management. Using various examples, it
is shown how the model may be best used.

The HCM-RM is the HOOD Group’s standard model for the
introduction and improvement of requirements management processes
within an organisation. Similar to the HOOD capability model for
requirements definition, HCM-RD, the HCM-RM is organised to consist
of three levels (apart from level 0, no requirements management processes
at all).

The HCM-RM is based on a step-by-step philosophy to introduce new
concepts of working and thinking. The model provides a suggestion of
how to start and in which order to proceed, but it can and should be
tailored to the individual needs and situation of every organisation. The
model covers the following interfaces to other systems engineering
disciplines in order to make the requirements management information as
complete as practically possible:

• Risk management
• Change management
• Version and configuration management
• Test management
• Quality management
• Project management

266 15 The HOOD Capability Model for Requirements Management

Using the criteria for reaching a certain level of maturity with respect to
requirements management, the HCM-RM allows to assess which level has
already been reached by an organisation. The criteria presented here
represent good practice and are a result of our many years of experience
with requirements management topics.

The two HOOD capability models, the HCM-RD and the HCM-RM, are
engineered to go hand in hand with each other. It is strongly recommended
to start with both models at the same time, rather than trying to reach a
remarkable level of maturity in only one model and ignore the other in the
meantime.

List of References

[Balz2000] H. Balzert, Lehrbuch der Softwaretechnik, 2nd Edition,
Spektrum Verlag, 2000.

[Bers1980] E. Bersoff, V. Henderson, S. Siegel, Software

Configuration Management, An Investment in Product
Integrity, Prentice-Hall, 1980.

[Boeh1979] B. W. Boehm, Software Engineering; R & D trends and

defense needs, Research, Directions in Software
Technology, MIT Press, Cambridge, MA, 1979.

[Boeh1981] B. W. Boehm, Software Engineering Economics, Prentice-

Hall, 1981.

[Boeh1988] B. W. Boehm, A Spiral Model of Software Development

and Enhancement, Computer Nr. 5, Mai 1988.

[Booc1994] G. Booch: Object-oriented Analysis and Design with

Applications, 2nd Edition, Benjamin/Cummings, Redwood
City, 1994

[Broo2003] F. P. Brooks jun., Vom Mythos des Mann-Monats, 1st

Edition, mitp-Verlag Bonn, 2003.

[Cox1989] B. Cox, Study of effectiveness of process improvement in

Software development projects, Jourrnal of International
Systems, May 1989.

[DeMa1979] T. DeMarco, Structured Analysis and System Specification,

1st Edition, Yourdon Press, USA, 1979.

[DeMa1982] T. De Marco, Controlling Software Projects – Management

Measurement and Estimation, 1st Edition, Prentice Hall,
USA, 1982.

268 List of References

[DIN199-1] DIN 199-1, Technische Produktdokumentation Technische
Produktdokumentation - CAD-Modelle, Zeichnungen und
Stücklisten - Teil 1: Begriffe - Teil 1: Begriffe, 2002-03.

[Glin2005] M. Glinz, Einführung in die systematische Entwicklung und

Pflege von Software, 2005.

[Hall1998] E. Hall, Managing Risk: Methods for Software System

Developments, Addison-Wesley Longman, Reading, MA,
1998.

[Hass2003] A. M. J. Hass, Configuration Management Principles and

Practices, 2003.

[Hatl1988] D. J. Hatley, I. A. Pirbhai, Strategies for real-time system

specification, 1st Edition, Dorset House, USA, 1988.

[Hind2004] B. Hindel, K. Hörmann, M. Müller, J. Schmied,

Basiswissen Software-Projektmanagement, 1st Edition,
d.punkt-Verlag, Heidelberg, 2004.

[Hoar1972] T. Hoare, Structured Programming, Academic Press, 1972.

[Hood2004a] HOOD Group, RM&E – Methodik, Course Notes, 2004.

[Hood2004b] HOOD Group, RM&E – Geschicktes Formulieren von

Anforderungen, Course Notes, 2004.

[Hood2005] C. Hood, R. Wiebel, Optimieren von Requirements

Management & Engineering, Springer Verlag, Heidelberg,
2005.

[Hull2004] E. Hull, K. Jackson, J. Dick: Requirements Engineering, 2nd

Edition, Springer-Verlag, Heidelberg, 2004.

[IEEE830] IEEE Standard 830-1998, Recommended Practice for

Software Requirements Specification, IEEE Computer
Society, 1998.

[ISO15504] ISO/IEC TR 15504:1998(E), Information Technology –

Software Process Assessment, 1st Edition 1999.

 List of References 269

[Jaco1994] I. Jacobson, The Object Advantage, Addison-Wesley, USA,
1994.

[Kepp1981] C. H. Keppner, B. B. Tregoe, The new rational manager, 1st

Edition, Princeton Research Press, USA, 1981.

[Kres2004] A. Kress, Ein starkes Paar: Requirements Management &

Engineering und Change Management, http://www.HOOD-
Group.com, 2004.

[Kreu2004] A.s Kreutz, Deutsche Informatik Akademie DIA, 2004.

[Kruc1998] P. Kruchten, The Rational Unified Process (An

Introduction), Addison-Wesley, 1998.

[Kruc1999] P. Kruchten, Der Rational Unified Process – eine

Einführung, deutsche Übersetzung, Addison.Wesley, 1999.

[Leff2000] D. Leffingwell, D. Widrig, Managing Software

Requirements – A unified approach, 1st Edition, Addison-
Wesley, USA, 2000.

[Masl1954] A. A. Maslow, Motivation and Personality, Harper and

Row, New York, 1954.

[Mazz1994] C. Mazza, J. Fairclough, B. Melton, D. de Pablo, A.

Scheffer, R. Stevens, Software Engineering Standards, 1st
Edition, Prentice Hall, UK, 1994.

[Meye1985] B. Meyer, On Formalism in Specifications, IEEE Software,

Jan 1985, 6-26.

[Oest2004] B. Oestereich, Objekt-orientierte Softwareentwicklung

Analyse und Design mit der UML 2.0, 6th Edition,
Oldenbourg Wissenschaftsverlag, München, 2004.

[Ould1999] M. Ould, Managing Software Quality and Business Risk,

John Wiley and Sons, Chichester, 1999.

[Page1988] M. Page-Jones, The practical guide to structured systems

design, 2nd Edition, Prentice Hall, USA, 1988.

270 List of References

[Robe1999] S. Robertson, J. Robertson: Mastering the Requirements
Process, Addison Wesley, Harlow England, 1999.

[Rumb1991] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.

Lorenson, Object-Oriented Modelling and Design, Prentice
Hall, Englewood Cliffs, 1991.

[Rumb1999] J. Rumbaugh, I. Jacobson, G. Booch: Unified Modeling

Language, Reference Manual, Addison Wesley, 1999.

[Rupp2001] C. Rupp: Requirements Engineering und –Management,

professionelle Anforderungsanalyse für die Praxis. Hanser
Verlag, 2001.

[Schm2003] K. Schmid, A. Birk, G. Heller, I. John, S. Joos, K. Müller,

T. Maßen, Report of the GI Work Group ”Requirements
Engineering for Product Lines”, Fraunhofer IESE, 2003.

[SEI2002] Capability Maturity Model® Integration (CMMI), Version

1.1. SEI, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh 2002.

[Shel1992] F. Sheldon, Reliability Measurement from Theory to

Practice, U.S. Air Force Project Report, 1992.

[Shla1988] S. Shlaer, S. J. Mellor, Object-Oriented Systems Analysis -

Modeling theWorld in Data, 1st Edition, Prentice Hall,
USA, 1988.

[Shla1992] S. Shlaer, S. J. Mellor, Object Lifecycles – Modeling the

World in States, 1st Edition, Prentice Hall, USA, 1992.

[Somm1997a] I. Sommerville, P. Sawyer, Requirements Engineering: A

Good Practice Guide, John Wiley & Sons, Chichester,
1997.

[Somm1997b] I. Sommerville, G. Kotonya, Requirements Engineering:

Processes and Techiques, John Wiley & Sons, Chichester,
1997.

[Somm1998] I. Sommerville, P. Sawyer, Requirements Engineering,

1998.

 List of References 271

[Somm2001] I. Sommerville, Software Engineering, 6th Edition,
Addison-Wesley, 2001.

[Spiv1988] J. M. Spivey, The Z Notation: a reference manual,

http://spivey.oriel.ox.ac.uk/~mike/zrm/, 1988.

[Stan2002] Standish Group: CHAOS Survey.

[Stev2000] R. Stevens: Requirements Methodology Version 1.5,

Professional Services, QSS Inc., 2000.

[Stoe2003a] F. Stöckel, U. Sterr: Anforderungen an Anforderungen,

http://www.hood-group.com, 2003 .

[Stoe2003b] F. Stöckel, U. Sterr, Umsetzung von Qualitätskriterien an

Anforderungen, http://www.hood-group.com, 2003.

[Szym1985] Szymanski, Neff, Defining Software Process Improvement,

1985.

[Vers1999] G. Versteegen, Das V-Modell in der Praxis, dpunkt-Verlag,

1999.

[Vers2000] G. Versteegen, Projektmanagement mit dem Rational

Unified Process, Springer Verlag, 2000.

[Vers2004] G. Versteegen, A. Heßler, C. Hood, C. Missling, R. Stücka,

Anforderungsmanagement, 1st Edition, Springer-Verlag,
Heidelberg, 2004

[Wall2001] E. Wallmüller, Software-Qualitätsmanagement in der

Praxis – Software-Qualität durch Führung und
Verbesserung von Software-Prozessen, Hanser Verlag,
2001.

[Your1988] E. Yourdan, Managing the System Life Cycle, 2nd Edition,

Prentice Hall, 1988.

Index

A

Activities of
- requirements development 45
- requirements management 64
Advanced requirements
management and engineering 193
Analysis 121

C

Capability models 215
- examples 218
Change management
- basics 175
- from theory to practice 186
- interface 175
- introduction 189
- phases 178
CMMI 220
Configuration 102
- units 112
Complete specification 193
Configuration management
- interface 101
- tools 115
Cost estimating 84

D

Definition of terms 2
Document view 195

H

HOOD capability models 215
HOOD capability model for
requirements definition 223
- idea 224
- level 1 228
- level 2 236
- level 3 239
- structure 226
- use 228
HOOD capability model for
requirements management 243
- level 1 245
- level 2 252
- level 3 259
- structure 243
- use 244

I

Information view 196

M

Managing people 96
Measurement 121
- interval 124
- units 124
Metric 121
- and management 132
- attributes 123

274 Index

- example 130
- importance 122
- interpretation 125
- psychological aspects 133
- strengths and weaknesses 125
Modelling 45

P

Process 43
Project
- planning and scheduling 85
- monitoring 88
Project management
- interface 79
Proposals 80

Q

Quality management 90

R

Release 102
Reporting 95
Requirements definition 42
- activities 45
- process 42
Requirements development 39
Requirements engineering 39
- activities 64
- advantages 11
- common concepts 29
- history 39
- methods 32
- processes 32
- roots 21
Requirements management 59
- advantages 11

- benefits 65
- common concepts 29
- implementation 198
- introduction 59
- methods 35
- processes 35
- resistance against 71
- roots 21
Requirements manager 59
Resources estimating 84
Risk 137
- assessment 148
- countermeasures 151
- identification 142
- monitoring 153
Risk management
- interface 137
- preparation 138
- process 141

S

Scope 46
SPICE 218
Systems engineering 29
- interfaces 193

T

Test management
- see Validation and verification
Traceability 36

V

Validation and verification 157
- costs 171
- effort 172
- interface 157

 Index 275

- method 164
- planning process 158
- scope 160
Version 102

Version management
- interface 101
- tools 115
V model 107

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

